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1. Complications of Time

Timing is Everything!
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Birth-weight- and gestational-age-specific perinatal mortality curves intersect when compared by race and
maternal smoking. The authors propose a new measure to replace fetal and infant mortality and an analytic
strategy to assess the effects of risk factors on this outcome. They used 1998 data for US Blacks and Whites.
Age-specific post–last menstrual period (LMP) mortality rate was defined as the proportion of deaths (stillbirth,
perinatal death, or infant death) at a given age post-LMP. The authors used extended Cox regression with time-
varying covariates and hazard ratios to model the effects of race and smoking on post-LMP mortality. Perinatal
mortality rates (conventional calculation) for Blacks and Whites showed the expected crossover. However,
analyses of post-LMP mortality showed no crossover. For the Black-White comparison, a hazard ratio of 1.72
(95% confidence interval: 1.67, 1.77) was obtained. The hazard was higher for smokers than for nonsmokers, but
the hazard ratio increased from 1.09 (95% confidence interval: 0.98, 1.22) at 22 weeks to 1.82 (95% confidence
interval: 1.72, 1.92) at 40 weeks. The hazard ratio associated with birth was also time dependent: higher than 1
for preterm gestation and lower than 1 for term gestation. The increasing adverse effect of smoking with
gestational age suggests an accumulating effect of smoking on mortality. Modeling post-LMP mortality eliminates
the crossover paradox for race and maternal smoking in a single statistical model.

birth weight; gestational age; infant mortality; proportional hazards models

Abbreviation: LMP, last menstrual period.

Editor’s note: A related article appears on page 207, two
invited commentaries are published on pages 211 and 213, and
a response by the authors of the first article to these commen-
taries is on page 215. In accordance with Journal policy, the
author of the second article was asked whether he wanted to
respond to these commentaries but chose not to do so.

Over 30 years ago, Yerushalmy et al. (1) identified a para-
doxical relation between maternal smoking and birth-

weight-specific neonatal mortality. Neonatal death rates for
infants of smokers were lower than those for infants of
nonsmokers at birth weights of 3,000 g or less; the reverse
was true at higher birth weights. In the last three decades,
this observation has been corroborated in many studies,
including comparisons based on race, infant sex, and country
(2–4), as well as other factors.

Intersecting neonatal mortality curves present an inferen-
tial challenge. The argument that fetuses of women who

Reprint requests to Dr. Robert W. Platt, Department of Pediatrics, Montreal Children’s Hospital Research Institute, McGill University, 2300 
Tupper Street, Montreal, Quebec, H3H 1PE Canada (e-mail: robert.platt@mcgill.ca).
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Abstract: There is substantial interest in understanding the impact 
of gestational weight gain on preterm delivery (delivery <37 
weeks). The major difficulty in analyzing the association between 
gestational weight gain and preterm delivery lies in their mutual 
dependence on gestational age, as weight naturally increases with 
increasing pregnancy duration. In this study, we untangle this inher-
ent association by reframing preterm delivery as time to delivery 
and assessing the relationship through a survival framework, which 
is particularly amenable to dealing with time-dependent covariates, 
such as gestational weight gain. We derive the appropriate analyti-
cal model for assessing the relationship between weight gain and 
time to delivery when weight measurements at multiple time points 
are available. Since epidemiologic data may be limited to weight 
gain measurements taken at only a few time points or at delivery 
only, we conduct simulation studies to illustrate how several stra-
tegically timed measurements can yield unbiased risk estimates. 
Analysis of the study of successive small-for-gestational-age births 
demonstrates that a naive analysis that does not account for the con-
founding effect of time on gestational weight gain suggests a strong 
association between higher weight gain and later delivery (hazard 
ratio: 0.89, 95% confidence interval = 0.84, 0.93). Properly account-
ing for the confounding effect of time using a survival model, how-
ever, mitigates this bias (hazard ratio: 0.98, 95% confidence interval 
= 0.97, 1.00). These results emphasize the importance of consider-
ing the effect of gestational age on time-varying covariates during 
pregnancy, and the proposed methods offer a convenient mechanism 
to appropriately analyze such data.
See Video Abstract at http://links.lww.com/EDE/B13.

(Epidemiology 2016;27: 182–187)

Maternal weight gain is a potentially modifiable determi-
nant of maternal and child health outcomes. Current 

Institute of Medicine recommendations concerning optimal 
weight gain are designed to minimize maternal and child risk 
of adverse short- and long-term outcomes.1 However, avail-
able evidence surrounding the association between weight 
gain and preterm delivery, arguably one of the most impor-
tant predictors of neonatal morbidity and mortality,2 is criti-
cally lacking. Existing research surrounding this association is 
potentially biased due to methodologic challenges in dealing 
with the inherent correlation between pregnancy weight gain 
and length of gestation.

Previous studies have reported a modest U-shaped rela-
tion between total gestational weight gain and preterm deliv-
ery, where both low and high weight gain are associated with 
increased risk.1 As demonstrated by Hutcheon et al,3 using a 
single measure of total weight gain at delivery can lead to a 
biased estimate of the risk of preterm, where low weight gain 
is ostensibly associated with increased risk, as women who 
delivered earlier had less time to gain weight. Some inves-
tigators have attempted to avoid this issue by calculating an 
average rate of weight gain or an adequacy ratio relative to 
the Institute of Medicine recommendations.4–8 These meth-
ods, however, rely on additional assumptions concerning the 
weight gain trajectory and may not completely eliminate this 
potential source of bias.3 One major issue with using a single 
measure of total weight gain as the exposure is that, among the 
women who deliver at term, some of the weight is gained after 
37 weeks, when they are no longer at risk for preterm delivery.

We propose an alternative means to address the cor-
relation between weight gain and gestational age at deliv-
ery by reframing the binary outcome of preterm (<37 vs.  
≥37 weeks of gestation) as time to delivery (i.e., gestational 
age at delivery), and incorporating this semicontinuous out-
come of interest into a survival framework. Studies of pre-
term delivery rarely use time-to-event analysis, despite its 
methodological advantages.9–11 The survival approach has the 
additional advantage of discriminating week-specific delivery 
risk across the continuum of gestational age. This could prove 
particularly useful in light of recent research suggesting that 
neonatal morbidities are differential even within the “term” 
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1. Complications of Time

Analytic Complications Due to Time

Censoring & Competing Risks
Correlated / Clustered Outcomes
Left and Right Truncation
Time-Dependent Confounding / Interaction
Confounding by Time-Scale**
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1. Complications of Time

Time-Dependent Confounding (simplified)

A1Z1A0 Y

U1

A1Z1A0 Y

U1
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1. Complications of Time

Time-Dependent Confounding: Examples

Overall effect of iron supplementation (A) during pregnancy on anemia
at delivery (Y) confounded by hemoglobin and serum ferritin

concentrations (Z; Bodnar 2004).

Overall effect of breastfeeding (A) on wheezing/atopy (Y) is confounded
by infant weight gain (Z; Groenwold 2014).

Overall effect of gestational weight gain (A) on infant mortality (Y) is
confounded by gestational age at birth (Z; Mitchell 2015).

A1Z1A0 Y

U1
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1. Complications of Time

Time-Dependent Interaction: Examples

Does the effect of iron supplementation (A) in week j on anemia at
delivery (Y) differ by past hemoglobin (Z) concentrations?

Does the effect of gestational weight gain (A) on perinatal
mortality (Y) depend on the gestational week which it was gained

(Z)?

Note how these differ from time-
fixed (or baseline) interaction / ef-
fect modification.
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1. Complications of Time

Time-Dependent Interaction / Effect Modification

A1Z1A0Z0 Y

U1U0

ID t A Z Y

1 0 0 0 119.65
1 1 1 0 119.65
2 0 0 0 87.29
2 1 0 1 87.29
3 0 1 1 137.72
3 1 1 1 137.72
4 0 0 1 105.28
4 1 0 1 105.28

We can’t fit separate regression
models for the effect of A on Y
within levels of Z.

We can’t include a main and
interaction term between A and
Z on Y.
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1. Complications of Time

Mediation

A1Z1A0 Y

U1

Direct
Indirect

How much of the effect
of A0 on Y is due to /
independent of A0’s
effect on A1?

We can’t quantify A0’s
effect by simply
adjusting for Z1 and A1.
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Causal Inference

The Meaning of Effect?

Thus far, we have used the word “effect” (overall, direct, indirect)
informally.

This lack of formality can lead to vagueness, ambiguity, and problems
with interpreting empirical results.

“Causal inference” seeks to address this.
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Causal Inference

Causal Inference & Potential Outcomes

Causal Inference:

A branch of scientific inquiry that combines identifiability
assumptions with statistical methods to estimate causal

(versus associational) effects

Potential Outcomes:

The theoretical framework used to rigorously define what we
mean by “causal effect”

Identifiability:

An effect (defined via POs) is identifiable if it can be written
as a function of the observed data
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Causal Inference

Potential Outcomes: ATE & ETT

A1Z1A0 Y

U1
Ya: the outcome that would be
observed if exposure were set to a = {a0,a1}

Different from the observed outcome.

Possible questions of interest:

E(Y1,1 − Y0,0) (ATE)

E(Ya0,1 − Ya0,0 | A1 = 1) (ETT)

ATE: What is the average difference in POs if everyone received a = {1, 1}
versus a = {0, 0}?

ETT: What is the average difference in POs if, among those who actually
received A1, everyone took A1 versus no one took A1?

13 / 45
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Causal Inference

Effect of Treatment on the Treated

ETT/ATE is specific to a particular treatment/population.

Under homogeneous treatment, ATE and ETT are the same.

ATE averages over all units (including those very unlikely to
be treated) & thus targets external validity.

ETT measures the “biological impact” of a particular
treatment

Refer to handout on ATE v ETT for an example.
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Causal Inference

Potential Outcomes: The Fundamental Problem of
Causal Inference

In general, it is impossible to observe different potential outcomes on the
same individual and, therefore, impossible to observe the effect (ATE or

ETT) of A on the outcome.

Takeaway: for a given individual, at least one potential outcome is
always missing.

This is the FPCI.

Causal inference is about how we can (best) impute summaries of these
missing potential outcomes.
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G Methods & Working Example 1

G Methods

Introduced by Robins ∼ 1980s-1990s

Consist of three methods:

The (parametric) g formula
Inverse probability weighted marginal structural models
G estimation of a structural nested model

The parametric g formula requires a model for everything

IPW MSMs require a model for the exposure

We will focus today on g estimation and structural nested
models
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G Methods & Working Example 1

A Taxonomy of Structural Nested Models

There are different kinds of structural nested models:
SN Mean Models
SN Distribution Models

SNMM:
Linear
Log-linear
Cumulative FT

SNDM:
Linear
Log-linear
Accelerated FT

When the mean does not
adequately summarize the data, or
interest lies in other components

of the outcome distribution
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G Methods & Working Example 1

Working Example 1

A0,A1: HAART at second and third trimester
Z1: HIV viral load at end of second trimester
Y: CD4 count at end of third trimester

A1Z1A0 Y

U1

Any Questions?
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G Methods & Working Example 1

Working Example I
Y N

A0

Z1

A1
162.83 210, 5271

137.72 93, 9030
1

A1
130.18 60, 7891

105.28 134, 7810

01

Z1

A1
144.84 136, 2931

119.65 60, 6570
1

A1
112.11 93, 7791

87.29 209, 2710

0

0
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G Methods & Working Example 1

Working Example I

Row A0 Z1 A1 N Y

1 0 1 0 60,657 119.65

2 0 1 1 136,293 144.84

3 0 0 0 209,271 87.29

4 0 0 1 93,779 112.11

5 1 1 0 93,903 137.72

6 1 1 1 210,527 162.83

7 1 0 0 134,781 105.28

8 1 0 1 60,789 130.18
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G Methods & Working Example 1

Background Assumptions

Non-Informative Censoring/Loss to Follow-up

Missing Data Completely at Random (MCAR)

No Measurement Error

21 / 45



G Methods & Working Example 1

Structural Nested Mean Model

E
[
Ya0,0 − Y0,0 | A0 = a0

]
= ψ0a0

E
[
Ya0,a1 − Ya0,0 | A0 = a0,A1 = a1,Z1

]
= ψ1a1 +ψ2a1Z1

Structural: model for contrast of counterfactual outcomes

Nested: counterfactual contrast nested in (conditional on) levels of
A0, and A0,A1,Z1

ψ quantifies the ETT: effect of treatment on the treated at time t, and
then no treatment after that

We can use g estimation to estimate ψ

22 / 45



G Methods & Working Example 1

Structural Nested Mean Model: Interpretation

ψ1 +ψ2: The effect of HAART in 3rd trimester (A1 = 1) among
those who actually received it and with high viral load at end of
2nd trimester (Z1 = 1).

ψ1: The effect of HAART in 3rd trimester (A1 = 1) among those
who actually received it and with low viral load at end of 2nd

trimester (Z1 = 0).

ψ0: The effect of HAART in 2nd trimester (A0 = 1) among those
who actually received it, and no HAART in the 2nd trimester
(A1 = 0).

These parameters (denoted “psi”) quantify our causal effects of interest.
Because of the FPCI, we can only estimate them under certain

assumptions. These assumptions will be demonstrated in the example.
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G Methods & Working Example 1

G Estimation of a SNMM: “By Hand”

The goal is to fill the last two columns of this table. We do this by
assumption.

Row A0 Z1 A1 N Y Y{A0 ,0} Y{0,0}

1 0 1 0 60,657 119.65

2 0 1 1 136,293 144.84

3 0 0 0 209,271 87.29

4 0 0 1 93,779 112.11

5 1 1 0 93,903 137.72

6 1 1 1 210,527 162.83

7 1 0 0 134,781 105.28

8 1 0 1 60,789 130.18
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G Methods & Working Example 1

G Estimation of a SNMM: “By Hand”

Counterfactual consistency:

The potential outcome under the observed exposure is the
observed outcome.

Y{A0,A1} = Y,

where (capital) A0, A1 denotes the observed exposure at time
zero and one.

25 / 45



G Methods & Working Example 1

G Estimation of a SNMM: “By Hand”

Step 1: Start filling in table by consistency assumption

Row A0 Z1 A1 N Y Y{A0 ,0} Y{0,0}

1 0 1 0 60,657 119.65

119.65 119.65

2 0 1 1 136,293 144.84

3 0 0 0 209,271 87.29

87.29 87.29

4 0 0 1 93,779 112.11

5 1 1 0 93,903 137.72

137.72

6 1 1 1 210,527 162.83

7 1 0 0 134,781 105.28

105.28

8 1 0 1 60,789 130.18
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G Estimation of a SNMM: “By Hand”

Step 1: Start filling in table by consistency assumption

Row A0 Z1 A1 N Y Y{A0 ,0} Y{0,0}

1 0 1 0 60,657 119.65 119.65 119.65

2 0 1 1 136,293 144.84

3 0 0 0 209,271 87.29 87.29 87.29

4 0 0 1 93,779 112.11

5 1 1 0 93,903 137.72 137.72

6 1 1 1 210,527 162.83

7 1 0 0 134,781 105.28 105.28

8 1 0 1 60,789 130.18
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G Methods & Working Example 1

G Estimation of a SNMM: “By Hand”

Step 1: Start filling in table by consistency assumption

E
[
Ya0,0 − Y0,0 | A0 = a0

]
= ψ0 a0

E
[
Ya0,a1 − Ya0,0 | A0 = a0,A1 = a1,Z1

]
= ψ1a1 +ψ2a1Z1

This is the effect of a0. If we
subtract it from YA0,0, we get Y0,0.

If this model is correct, we can use it to continue filling the table.
Correct parametrically (model is unsaturated)
Correct causally
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G Methods & Working Example 1

G Estimation of a SNMM: “By Hand”

Step 1: Continue filling by consistency + correct model specification

Row A0 Z1 A1 N Y Y{A0 ,0} Y{0,0}

1 0 1 0 60,657 119.65 119.65 119.65

2 0 1 1 136,293 144.84

3 0 0 0 209,271 87.29 87.29 87.29

4 0 0 1 93,779 112.11

5 1 1 0 93,903 137.72 137.72

6 1 1 1 210,527 162.83

7 1 0 0 134,781 105.28 105.28 105.28 −ψ0

8 1 0 1 60,789 130.18

E
[
Ya0 ,0 − Y0,0 | A0 = a0

]
= ψ0a0

E
[
Ya0 ,a1 − Ya0 ,0 | A0 = a0,A1 = a1,Z1

]
= ψ1a1 +ψ2a1Z1
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G Estimation of a SNMM: “By Hand”

Step 1: Continue filling by consistency + correct model specification

Row A0 Z1 A1 N Y Y{A0 ,0} Y{0,0}

1 0 1 0 60,657 119.65 119.65 119.65

2 0 1 1 136,293 144.84 144.84 −ψ1 −ψ2 144.84 −ψ1 −ψ2

3 0 0 0 209,271 87.29 87.29 87.29

4 0 0 1 93,779 112.11 112.11 −ψ1 112.11 −ψ1

5 1 1 0 93,903 137.72 137.72 137.72 −ψ0

6 1 1 1 210,527 162.83 162.83 −ψ1 −ψ2 162.83 −ψ0 −ψ1 −ψ2

7 1 0 0 134,781 105.28 105.28 105.28 −ψ0

8 1 0 1 60,789 130.18 130.18 −ψ1 130.18 −ψ0 −ψ1

E
[
Ya0 ,0 − Y0,0 | A0 = a0

]
= ψ0a0

E
[
Ya0 ,a1 − Ya0 ,0 | A0 = a0,A1 = a1,Z1

]
= ψ1a1 +ψ2a1Z1
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G Methods & Working Example 1

G Estimation of a SNMM: “By Hand”

Exchangeability implies:

Y{0,0} ∐A0 (Marginal)
Y{0,0} ∐A1 | A0,Z1 (Conditional)

Therefore, for a given unique strata of {A0,Z1}, the mean of Y0,0 among
those with A1 = 0 is equal to the mean of Y0,0 among those with A1 = 1

Exposure is independent of the potential outcomes
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G Methods & Working Example 1

G Estimation of a SNMM: “By Hand”

Step 1: Solve for parameters by exchangeability

Row A0 Z1 A1 N Y Y{A0 ,0} Y{0,0}

1 0 1 0 60,657 119.65 119.65 119.65

2 0 1 1 136,293 144.84 144.84 −ψ1 −ψ2 144.84 −ψ1 −ψ2

3 0 0 0 209,271 87.29 87.29 87.29

4 0 0 1 93,779 112.11 112.11 −ψ1 112.11 −ψ1

5 1 1 0 93,903 137.72 137.72 137.72 −ψ0

6 1 1 1 210,527 162.83 162.83 −ψ1 −ψ2 162.83 −ψ0 −ψ1 −ψ2

7 1 0 0 134,781 105.28 105.28 105.28 −ψ0

8 1 0 1 60,789 130.18 130.18 −ψ1 130.18 −ψ0 −ψ1
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G Methods & Working Example 1

G Estimation of a SNMM: “By Hand”

Results:

Parameter Estimate
ψ0 25.0
ψ1 25.0
ψ2 0

Among those who received HAART:
Taking HAART in the second or third trimester increases CD4
by 25 cells/mm3.
The third trimester effect is constant across levels of HIV viral
load (high/low).
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Working Example I
Y N

A0

Z1

A1
162.83 210, 5271

137.72 93, 9030
1

A1
130.18 60, 7891

105.28 134, 7810

01

Z1

A1
144.84 136, 2931

119.65 60, 6570
1

A1
112.11 93, 7791

87.29 209, 2710

0

0
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G Methods & Working Example 1

(modified) G Estimation of a SNMM

Let’s assume we know ψ2 = 0.

1. Estimate propensity score for A:

πA1 = {1 + exp[−(α0 + α1Z1 + α2A0)]}
−1

πA0 = {1 + exp[−(β0)]}
−1

2. Estimate ψ1 by fitting a linear regression model for Y,
replacing A1 with rA1 and adding πA1 :

E(Y | r̂A1 ,A0,Z1, π̂A1) = ψ1r̂A1 + γ0 + γ1A0 + γ2Z1 + δ1π̂A1
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G Methods & Working Example 1

(modified) G Estimation of a SNMM

3. Removing the effect of A1 from Y

Ỹ = Y − ψ̂1A1.

4. Regress Ỹ against rA0 and add πA0 :

E(Ỹ | r̂A0 , π̂A0) = ψ0r̂A0 + γ00 + δ10π̂A0
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G Methods & Working Example 1

(modified) G Estimation of a SNMM

This approach gives two chances to adjust for confounding:

By modeling the exposure to obtain a propensity score (πA)
and the exposure residuals (rA)
By modeling the outcome via the regression model
E(Y | A0,A1,Z1)

This is known as double-robustness
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G Methods & Working Example 1

(modified) G Estimation: Regression Based

regression based.sas

*G Estimation OF A SNMM (SAS);

*MODIFIED G-ESTIMATION OF A SNMM: REGRESSION BASED APPROACH;

*fit propensity score models;

proc logistic data=a desc;

freq n;

model a1 = z1 a0 ;

output out=a pred=pi a1;

proc logistic data=a desc;

freq n;

model a0 = ;

output out=a pred=pi a0;

run;quit;run;
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G Methods & Working Example 1

(modified) G Estimation: Regression Based

data a; set a;res a1 = a1-pi a1;res a0 = a0-pi a0;run;

*model psi 1;

proc reg data=a;

freq n;

model y = res a1 z1 a0 pi a1;

ods output ParameterEstimates=parm1

(where=(Variable="res a1") keep=variable estimate);

run;quit;run;

*housekeeping;

data parm1;set parm1; merg=1;

rename estimate=psi11;drop variable;

run;

data a;set a;merg=1;

run;
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G Methods & Working Example 1

(modified) G Estimation: Regression Based

*subtract a1 effect from y;

data b;

merge a parm1;

by merg;

y tilde = y - psi11*a1;

run;

*regress transformed outcome against a0;

proc reg data=b;

freq n;

model y tilde = res a0 pi a0;

ods output ParameterEstimates=parm0

(where=(Variable="res a0") keep=variable estimate);

run;quit;run;
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G Methods & Working Example 1

(modified) G Estimation: Regression Based

Results:

Parameter Estimate
ψ0 25.0
ψ1 25.0

Among those who received HAART:
Taking HAART in the second or third trimester increases CD4
by 25 cells/mm3.
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G Methods & Working Example 1

(modified) G Estimation: Mediation Analysis

X: 2nd trimester systolic BP.
M: 3rd trimester systolic BP.
Z1: Dietary+Exercise intervention.
Y: Fetal or infant death.

MX Y

C

Z1 U

Log-Linear SNMM.
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G Methods & Working Example 1

Structural Nested Mean Model: Mediation Analysis

E
[
Yx,0 − Y0,0 | X = x

]
= ψ0x

E
[
Yx,m − Yx,0 | X = x,M = m,Z1

]
= ψ1m+ψ2mZ1

ψ1 +ψ2: The effect of a unit increase in 3rd trimester BP with prior
exercise/diet intervention.

ψ1: The effect of a unit increase in 3rd trimester BP without prior
exercise/diet intervention.

ψ0: The controlled direct effect of unit increase in 2nd trimester BP
(with 3nd trimester BP fixed at zero value.
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G Methods & Working Example 1

(modified) G Estimation: Mediation Analysis

We will now fit log-linear SNMM for binary outcome
Our goal is to estimate the CDE Risk Ratio
Continuous exposure and mediator (linear regression to
obtain propensity score)
Same procedure, but must now use GLM with Gamma
distribution and log link
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G Methods & Working Example 1

(modified) G Estimation of a SNMM

1. Estimate propensity score for X andM and obtain residuals:

πX = E[α0 + α1CXY ]

πM = E[β0 + β1CMY + β2CXY + β3X]

rX = X− πX

rM =M− πM

2. Fit a log-linear Gamma GLM for Y, replacingMwith rM and
adding πM:

logE(Y | X, r̂M,Z1, π̂M) = ψ1r̂M +ψ2Xr̂M

+ γ01 + γ11Z1 + γ21X

+ η11π̂M + η21Xπ̂M
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G Methods & Working Example 1

(modified) G Estimation of a SNMM

3. Removing the effect ofM from Y

Ỹ = Y × exp(−ψ̂1M− ψ̂2XM).

4. Regress Ỹ against rX, C, and add πX:

logE(Ỹ | r̂X,C, π̂X) = ψ0r̂X + β00 + β10C+ η10π̂X
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G Methods & Working Example 1

(modified) G Estimation: Regression Based

snmmDR LogLinear.sas

*DRG ESTIMATION OF A LOG LINEAR SNMM: REGRESSION BASED;

*propensity score;

proc reg data= a;

model m = x c xy c my;

output out=a pred=piM;

ods select none;

run;quit;run;

proc reg data=a;

model x = c xy;

output out=a pred=piX;

ods select none;

run;quit;run;
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G Methods & Working Example 1

(modified) G Estimation: Regression Based

Have to multiply X by residual and PS forM
What is constant("small")?

data a;

set a;

rM = m - piM;

rX = x - piX;

xrM = x*rM;

xpiM = x*piM;

y1 = y + constant("small");

run;
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G Methods & Working Example 1

(modified) G Estimation: Regression Based

proc genmod data=a;

class id;

model y1 = rM xrM piM xpiM x c xy c my

/ dist=gamma link=log;

repeated subject=id / type=ind;

ods output GEEEmpPEst=parm1

(where=(parm="rM"|parm="xrM")keep = parm estimate);

run;quit;run;

*housekeeping;

proc transpose data=parm1 out=parm1(drop= name )

prefix=psi ;id parm;run;

data parm1;set parm1;merg=1;

data a;set a;merg=1;run;
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G Methods & Working Example 1

(modified) G Estimation: Regression Based

data b;

merge a parm1;

by merg;

y1 tilde = y1*exp( - psi rM*m - psi xrM*xm);

proc genmod data=b;

class id;

model y1 tilde = rX piX c xy / link=log dist=gamma;

repeated subject=id / type=ind;

ods output GEEEmpPEst=cde(where=(parm="rX"));

run;quit;run;
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G Methods & Working Example 1

Results

CDE = 1.27, 95% CI: 1.18, 1.37

The risk of mortality due to the direct effect a one-unit systolic
BP increase in the second trimester is 1.27 times the risk of no
increase.
Assumes linear dose-response, which can be relaxed using,
e.g., polynomials
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Concluding Remarks

SNMs are useful for complex time-dependent confounding
and scenarios, and questions related to time-dependent
interaction.
The regression-based approach presented here greatly
facilitates implementation.
Ideally, several modeling strategies targeting the same causal
quantity of interest should be used in a given project.
Plenty of user-friendly options are becoming increasingly
available.
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