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1. Complications of Time

Timing is Everything!
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1. Complications of Time

Analytic Complications Due to Time

o Censoring & Competing Risks

o Correlated / Clustered Outcomes

o Left and Right Truncation

o Time-Dependent Confounding / Interaction
o Confounding by Time-Scale**
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Time-Dependent Confounding (simplified)
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1. Complications of Time

Time-Dependent Confounding: Examples

Overall effect of iron supplementation (A) during pregnancy on anemia
at delivery (Y) confounded by hemoglobin and serum ferritin
concentrations (Z; Bodnar 2004).
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Time-Dependent Confounding: Examples

Overall effect of iron supplementation (A) during pregnancy on anemia
at delivery (Y) confounded by hemoglobin and serum ferritin
concentrations (Z; Bodnar 2004).

Overall effect of breastfeeding (A) on wheezing/atopy (Y) is confounded
by infant weight gain (Z; Groenwold 2014).
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1. Complications of Time

Time-Dependent Confounding: Examples

Overall effect of iron supplementation (A) during pregnancy on anemia
at delivery (Y) confounded by hemoglobin and serum ferritin
concentrations (Z; Bodnar 2004).

Overall effect of breastfeeding (A) on wheezing/atopy (Y) is confounded
by infant weight gain (Z; Groenwold 2014).

Overall effect of gestational weight gain (A) on infant mortality (Y) is
confounded by gestational age at birth (Z; Mitchell 2015).
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Time-Dependent Interaction: Examples

Does the effect of iron supplementation (A) in week j on anemia at
delivery (Y) differ by past hemoglobin (Z) concentrations?
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Time-Dependent Interaction: Examples

Does the effect of iron supplementation (A) in week j on anemia at
delivery (Y) differ by past hemoglobin (Z) concentrations?

Does the effect of gestational weight gain (A) on perinatal
mortality (Y) depend on the gestational week which it was gained

(2)?

Q
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1. Complications of Time

Time-Dependent Interaction: Examples

Does the effect of iron supplementation (A) in week j on anemia at
delivery (Y) differ by past hemoglobin (Z) concentrations?

(2)?

Does the effect of gestational weight gain (A) on perinatal
mortality (Y) depend on the gestational week which it was gained

Note how these differ from time-

fixed (or baseline) interaction / ef-
fect modification.

8/45



1. Complications of Time

Time-Dependent Interaction / Effect Modification
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0 1

ID t A Z'Y We can't fit separate regression
1 0 0 0 119.65 models for the effect of AonY
1 1 1 0 119.65 within levels of Z.

2 0 0 0 8729

2 1 0 1 8729 We can’t include a main and

3 0 1 1 137.72 interaction term between A and
3 1 1 1 137.72 ZonY.

4 0 0 1 105.28

4 1 0 1 105.28




1. Complications of Time

Mediation

A0—>Z1:_A1\—¢Y
\X /7

Uy

How much of the effect
of AponYisdueto/
independent of Agy’s

ff ?
Direct effect on A

Indirect We can’t quantify Ag’s
effect by simply

adjusting for Z; and A;.



Causal Inference

The Meaning of Effect?
Thus far, we have used the word “effect” (overall, direct, indirect)
informally.

This lack of formality can lead to vagueness, ambiguity, and problems
with interpreting empirical results.

“Causal inference” seeks to address this.



Causal Inference

Causal Inference & Potential Outcomes

o Causal Inference:

A branch of scientific inquiry that combines identifiability
assumptions with statistical methods to estimate causal
(versus associational) effects




Causal Inference

Causal Inference & Potential Outcomes

Causal Inference:

A branch of scientific inquiry that combines identifiability

assumptions with statistical methods to estimate causal
o Potential Outcomes:

(versus associational) effects

mean by “causal effect”

The theoretical framework used to rigorously define what we
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Causal Inference

Causal Inference & Potential Outcomes

Causal Inference:

A branch of scientific inquiry that combines identifiability
assumptions with statistical methods to estimate causal

(versus associational) effects
Potential Outcomes:

o Identifiability:

The theoretical framework used to rigorously define what we
mean by “causal effect”

An effect (defined via POs) is identifiable if it can be written
as a function of the observed data

12/45



Causal Inference

Potential Outcomes: ATE & ETT

Aoq

0 Y% the outcome that would be
observed if exposure were set to @ = {ag, a;}
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Causal Inference

Potential Outcomes: ATE & ETT

Ao%

@ Y% the outcome that would be \ -

observed if exposure were set to @ = {ap, a;} U

o Different from the observed outcome.
@ Possible questions of interest:
E(YY —Y00) (ATE)
E(Yo! — Y@ | Ay =1) (ETT)

o ATE: What is the average difference in POs if everyone received @ = {1, 1}
versus a = {0, 0}?

it
<
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Causal Inference

Potential Outcomes: ATE & ETT

AO%

@ Y% the outcome that would be 1 ™~ 1 ~ !
observed if exposure were set to @ = {ap, a;} U
@ Different from the observed outcome.
@ Possible questions of interest:
E(Y! —Y00) (ATE)
E(Yo! — YO [ Ay =1) (ETT)

0 ATE: What is the average difference in POs if everyone received a = {1, 1}
versus a = {0,0}?

o ETT: What is the average difference in POs if, among those who actually

received A4, everyone took A; versus no one took A;?
o (=] = E =] QA
13/45



Causal Inference

Effect of Treatment on the Treated

o ETT/ATE is specific to a particular treatment/population.
o Under homogeneous treatment, ATE and ETT are the same.

o ATE averages over all units (including those very unlikely to
be treated) & thus targets external validity.

o ETT measures the “biological impact” of a particular
treatment

o Refer to handout on ATE v ETT for an example.



Causal Inference

Potential Outcomes: The Fundamental Problem of
Causal Inference

In general, it is impossible to observe different potential outcomes on the
same individual and, therefore, impossible to observe the effect (ATE or
ETT) of A on the outcome.

Takeaway: for a given individual, at least one potential outcome is
always missing.

This is the FPCI.

Causal inference is about how we can (best) impute summaries of these
missing potential outcomes.



G Methods & Working Example 1
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o Introduced by Robins ~ 1980s-1990s
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G Methods

o Introduced by Robins ~ 1980s-1990s

o Consist of three methods:

o The (parametric) g formula
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o G estimation of a structural nested model

o The parametric g formula requires a model for everything

o IPW MSMs require a model for the exposure



G Methods & Working Example 1

G Methods

o Introduced by Robins ~ 1980s-1990s

o Consist of three methods:

o The (parametric) g formula
o Inverse probability weighted marginal structural models
o G estimation of a structural nested model

o The parametric g formula requires a model for everything
o IPW MSMs require a model for the exposure

o We will focus today on g estimation and structural nested
models



G Methods & Working Example 1
A Taxonomy of Structural Nested Models
There are different kinds of structural nested models:

o SN Mean Models
o SN Distribution Models

SNMM: SNDM:
o Linear o Linear
o Log-linear o Log-linear

o Cumulative FT o Accelerated FT



G Methods & Working Example 1
A Taxonomy of Structural Nested Models
There are different kinds of structural nested models:

o SN Mean Models
o SN Distribution Models

SNMM: SNDM:
o Linear o Linear
o Log-linear o Log-linear
o Cumulative FT o Accelerated FT

When the mean does not
adequately summarize the data, or
interest lies in other components
of the outcome distribution




G Methods & Working Example 1

Working Example 1

o Ay, A1: HAART at second and third trimester
o Zy: HIV viral load at end of second trimester
o Y: CD4 count at end of third trimester

A0—>21:DY

~ 7
Uy

[ Any Questions?




G Methods & Working Example 1

Working Example I

=
T~

=
T~

A1

A1

Y N
87.29 209,271

112.11 93,779

119.65 60,657
144.84 136,293

105.28 134,781
130.18 60,789

137.72 93,903
162.83 210,527

19/45



G Methods & Working Example 1

Working Example I

Row Ap Z; A1 N Y

1 0 1 0 60657 119.65
2 0o 1 1 136,293 144.84
3 0 0 0 209271 8729
4 0O o0 1 93779 11211
5 1 1 0 93903 137.72
6 1 1 1 210527 162.83
7 1 0 0 134781 105.28
8 1 0 1 60,78 130.18




G Methods & Working Example 1

Background Assumptions

o Non-Informative Censoring/Loss to Follow-up
o Missing Data Completely at Random (MCAR)

o No Measurement Error



G Methods & Working Example 1

Structural Nested Mean Model

E[YoP — YO | Ag = ag] =oag
E [Yoorst — vl | Ag = ap, Ay = a1,Z1] = $ra1 + o Zy

o Structural: model for contrast of counterfactual outcomes

o Nested: counterfactual contrast nested in (conditional on) levels of
Ao, and Ay, A1, Z4

o 1 quantifies the ETT: effect of treatment on the treated at time t, and
then no treatment after that

o We can use g estimation to estimate



G Methods & Working Example 1

Structural Nested Mean Model: Interpretation

o U7 + y: The effect of HAART in 379 trimester (A; = 1) among
those who actually received it and with high viral load at end of
2nd trimester (Z; = 1).

o U1: The effect of HAART in 37¢ trimester (A; = 1) among those
who actually received it and with low viral load at end of 2™4
trimester (Z; = 0).

o Vo: The effect of HAART in 2™¢ trimester (A9 = 1) among those
who actually received it, and no HAART in the 24 trimester
(A1 =0).

These parameters (denoted “psi”) quantify our causal effects of interest.
Because of the FPCI, we can only estimate them under certain
assumptions. These assumptions will be demonstrated in the example.

23/45



G Methods & Working Example 1

G Estimation of a SNMM: “By Hand”

The goal is to fill the last two columns of this table. We do this by
assumption.

Row Ay Z; A; N Y YA 0} Yoo}
1 0 1 0 60,657 119.65

2 0 1 1 136,293 144.84

3 0 0 0 209,271 87.29

4 0 0 1 93,779 112.11

5 1 1 0 93,903 137.72

6 1 1 1 210,527 162.83

7 1 0 0 134,781 105.28

8 1 0 1 60,789 130.18




G Methods & Working Example 1

G Estimation of a SNMM: “By Hand”

Counterfactual consistency:

o The potential outcome under the observed exposure is the
observed outcome.

Y{AO/Al} — Y’

where (capital) A, A1 denotes the observed exposure at time
zero and one.



Step 1: Start filling in table by consistency assumption

G Methods & Working Example 1

G Estimation of a SNMM: “By Hand”

Row Ay Z; Ay N Y

1 0 1 0 60,657  119.65
2 0 1 1 136,293 144.84
3 0 0 0 209,271  87.29
4 0 0 1 93,779 112.11
5 1 1 0 93,903 137.72
6 1 1 1 210,527  162.83
7 1 0 0 134,781 105.28
8 1 0 1 60,789 130.18
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G Methods & Working Example 1

G Estimation of a SNMM: “By Hand”

Step 1: Start filling in table by consistency assumption

E[Yeol — Y20 | Ag = ag] = o ag
E [yeour — Y90 | Ag = ap, A a1, Z1] = Prag + a1 2,

This is the effect of ay. If we
subtract it from Y?00, we get Y00

If this model is correct, we can use it to continue filling the table.
Correct parametrically (model is unsaturated)

Correct causally



G Methods & Working Example 1

G Estimation of a SNMM: “By Hand”

Step 1: Continue filling by consistency + correct model specification

Row Ay Z; Ay N Y Y00} Y00}

1 0 1 0 60,657  119.65 119.65 119.65

2 0 1 1 136,293 144.84

3 0 0 0 209,271 8729  87.29 87.29

4 0 0 1 93,779 112.11

5 1 1 0 93,903 137.72  137.72

6 1 1 1 210,527  162.83

7 1 0 0 134,781 105.28 105.28 105.28 — 1y
8 1 0 1 60,789 130.18

E[Y®0 — Y20 | Ay = ap] =poao
E[Yooor — Y90 | Ag = ap, Ay = a1, Z1] =Prar + a1 Zy

28/45



G Methods & Working Example 1

G Estimation of a SNMM: “By Hand”

Step 1: Continue filling by consistency + correct model specification

Row Ay Z; Ay N Y Y00} Y00}

1 0 1 0 60,657 119.65 119.65 119.65

2 0 1 1 136,293 144.84 144.84 —; — 1, 144.84 —p1 — U,

3 0 0 0 209,271  87.29 87.29 87.29

4 0 0 1 93,779 112.11 11211 —, 112.11 —y

5 1 1 0 93,903 137.72  137.72 137.72 —y

6 1 1 1 210,527 162.83 162.83 —1 — P, 162.83 —py — 1 — P2
7 1 0 0 134,781 105.28 105.28 105.28 —y

8 1 0 1 60,789 130.18  130.18 — 130.18 —o — P4

E[Y®0 — Y20 | Ay = ap] =poao

E[Yooor — Y90 | Ag = ap, Ay = a1, Z1] =Prar + a1 Zy

29/45



G Methods & Working Example 1

G Estimation of a SNMM: “By Hand”

Exchangeability implies:
o YOOITT A (Marginal)
Qo Y{O’O} ]_[ Al | A(), Zl (Conditional)

Therefore, for a given unique strata of {Ag, Z;}, the mean of Y00 among
those with A; = 0 is equal to the mean of Y00 among those with A; =1

Exposure is independent of the potential outcomes



G Methods & Working Example 1

G Estimation of a SNMM: “By Hand”

Step 1: Solve for parameters by exchangeability

Row Ay Z; A1 N Y Y00} Y00

1 0 1 0 60,657 119.65 119.65 119.65

2 0 1 1 136,293 144.84 144.84 —; — 1, 144.84 —p1 — 1,

3 0 0 0 209,271 8729  87.29 87.29

4 0 0 1 93,779 112.11 11211 —y 112.11 —y

5 1 1 0 93,903 137.72  137.72 137.72 —y

6 1 1 1 210,527 162.83 162.83 —p; — 1, 162.83 —py — 1 — P
7 1 0 0 134,781 105.28 105.28 105.28 —,

8 1 0 1 60,789 130.18  130.18 —; 130.18 —o — P4

w



G Methods & Working Example 1

G Estimation of a SNMM: “By Hand”

Results:

Parameter Estimate

i 25.0
b, 25.0
U 0

Among those who received HAART:

o Taking HAART in the second or third trimester increases CD4
by 25 cells/mm?®.

o The third trimester effect is constant across levels of HIV viral
load (high/low).



G Methods & Working Example 1

Working Example I

Y N
0
N 8729 209,271
0 o
v 1 112.11 93,779
Z
0
/ T A 119.65 60,657
] 14484 136,293
Ao
0
W 10528 134,781
1
1 v 7 130.18 60,789
Zy
0
T A 137.72 93,903

1 16283 210,527



G Methods & Working Example 1

(modified) G Estimation of a SNMM

Let’s assume we know 1, = 0.

1. Estimate propensity score for A:

= {1 +expl—(og + 0 Z; + 0pAg)]}
—{1+e><p —(Bo)l}



G Methods & Working Example 1

(modified) G Estimation of a SNMM

Let’s assume we know 1, = 0.

1. Estimate propensity score for A:

= {1 + eXp[_((XO + o Z1 + (XzAO)]}_l
—{1+e><p —(Bo)]}

2. Estimate \); by fitting a linear regression model for Y,
replacing A; with ra, and adding 74, :

E(Y [ fa,, Ao, Z1,Tta,) = P1fa, + Yo + V1A + V2Zi + 017t



G Methods & Working Example 1

(modified) G Estimation of a SNMM

3. Removing the effect of A; from Y

Y=Y —-1A,.



G Methods & Working Example 1

(modified) G Estimation of a SNMM

3. Removing the effect of A; from Y

Y=Y —-1A,.

4. Regress Y against 1, and add 7a,:

E(Y | Tay ta,) = Wofa, + Yoo + d107ta,



G Methods & Working Example 1

(modified) G Estimation of a SNMM

This approach gives two chances to adjust for confounding;:

o By modeling the exposure to obtain a propensity score (1)
and the exposure residuals (1)

o By modeling the outcome via the regression model
E(Y [ Ao, A1, Z4)

This is known as double-robustness



G Methods & Working Example 1

(modified) G Estimation: Regression Based

regression_based.sas

*G Estimation OF A SNMM (SAS);
*MODIFIED G-ESTIMATION OF A SNMM: REGRESSION BASED APPROACH;
*fit propensity score models;
proc logistic data=a desc;

freq n;

model al = z1 a0 ;

output out=a pred=pi_al;
proc logistic data=a desc;

freq n;

model a® = ;

output out=a pred=pi_a0;
run;quit;run;
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(modified) G Estimation: Regression Based

data a; set ajres_al = al-pi_al;res_a® = a®-pi_a0;run;
*model psi_1;
proc reg data=a;
freq n;
model y = res_al zl1 a® pi_al;
ods output ParameterEstimates=parml
(where=(Variable="res_al") keep=variable estimate);
run;quit;run;
*housekeeping;
data parml;set parml; merg=1;
rename estimate=psill;drop variable;
run;
data a;set aj;merg=1;
run;
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(modified) G Estimation: Regression Based

*subtract al effect from y;
data b;
merge a parml;
by merg;
y_tilde = y - psill*al;
run;
*regress transformed outcome against a0;
proc reg data=b;
freq n;
model y_tilde = res_a® pi_a0;
ods output ParameterEstimates=parmQ
(where=(Variable="res_a0") keep=variable estimate);

run;quit;run;
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(modified) G Estimation: Regression Based

Results:

Parameter Estimate

i 25.0
b, 25.0

Among those who received HAART:

o Taking HAART in the second or third trimester increases CD4
by 25 cells/mm?.
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(modified) G Estimation: Mediation Analysis

o X: 24 trimester systolic BP.

o M: 3™ trimester systolic BP.

o Z;: Dietary-+Exercise intervention.
o Y: Fetal or infant death.

X\?_A(;\\IY
A

Z; —— Uu

‘ Log-Linear SNMM.
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Structural Nested Mean Model: Mediation Analysis

E [YX 0
E [y©m

= x| =Pox
=X, M = m, Zl] = 11)1111 + 1|)sz1

o U1 + y: The effect of a unit increase in 374 trimester BP with prior
exercise/diet intervention.

o 1: The effect of a unit increase in 379 trimester BP without prior
exercise/diet intervention.

o 1o: The controlled direct effect of unit increase in 29 trimester BP
(with 3™¢ trimester BP fixed at zero value.

39/45
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(modified) G Estimation: Mediation Analysis

o We will now fit log-linear SNMM for binary outcome
o Our goal is to estimate the CDE Risk Ratio

o Continuous exposure and mediator (linear regression to
obtain propensity score)

o Same procedure, but must now use GLM with Gamma
distribution and log link
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(modified) G Estimation of a SNMM

1. Estimate propensity score for X and M and obtain residuals:

mix = Elog + o1 Cxy]

im = E[Bo + B1Cmy + B2Cxy + B3X]
rx = X — Ty

™ = M—TEM
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(modified) G Estimation of a SNMM

1. Estimate propensity score for X and M and obtain residuals:

mix = Elog + o1 Cxy]

im = E[Bo + B1Cmy + B2Cxy + B3X]
rx = X — Ty

™ = M—TEM

2. Fit a log-linear Gamma GLM for Y, replacing M with ry; and
adding 7ty
log E(Y [ X, fm, Z1,im) = ditm + o Xfm
+ v +vuli +yaX
+Nuftm + N1 X7im
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(modified) G Estimation of a SNMM

3. Removing the effect of M from Y

Y =Y x exp(—p1M — ,XM).
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(modified) G Estimation of a SNMM

3. Removing the effect of M from Y

Y =Y x exp(—p1M — ,XM).

4. Regress Y against rx, C, and add 7x:

log E(Y | #x,C, tx) = Wofx + Boo + B10C + M1o7ix
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(modified) G Estimation: Regression Based

snmmDR_LogLinear.sas

*DRG ESTIMATION OF A LOG LINEAR SNMM: REGRESSION BASED;
*propensity score;
proc reg data= a;
model m = X c_xy cmy;
output out=a pred=piM;
ods select none;
run;quit;run;
proc reg data=a;
model x = c_xy;
output out=a pred=piX;
ods select none;
run;quit;run;
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(modified) G Estimation: Regression Based

o Have to multiply X by residual and PS for M
o Whatis constant("small")?

data a;
set a;
rM = m - pil;
rX = x - piX;
xrM = x*rM;
XpiM = x*piM;

yl = y + constant("small");
run;
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(modified) G Estimation: Regression Based

proc genmod data=a;
class id;
model yl1 = rM xrM piM xpiM x c_xy cmy
/ dist=gamma link=log;
repeated subject=id / type=ind;
ods output GEEEmpPEst=parml
(where=(parm="rM" |parm="xrM")keep = parm estimate);
run;quit;run;
*housekeeping;
proc transpose data=parml out=parml(drop=_name_)
prefix=psi_;id parm;run;
data parml;set parml;merg=1;
data a;set a;merg=1;run;
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(modified) G Estimation: Regression Based

data b;

proc

merge a parml;

by merg;

yl_tilde = yl*exp( - psi_rM*m - psi_xrM*xm);

genmod data=b;

class id;

model yl tilde = rX piX c.xy / link=log dist=gamma;
repeated subject=id / type=ind;

ods output GEEEmpPEst=cde(where=(parm="rX"));

run;quit;run;
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Results
CDE =1.27,95% CI: 1.18, 1.37

o The risk of mortality due to the direct effect a one-unit systolic
BP increase in the second trimester is 1.27 times the risk of no
increase.

o Assumes linear dose-response, which can be relaxed using,
e.g., polynomials
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Concluding Remarks

o SNMs are useful for complex time-dependent confounding
and scenarios, and questions related to time-dependent
interaction.

o The regression-based approach presented here greatly
facilitates implementation.

o Ideally, several modeling strategies targeting the same causal
quantity of interest should be used in a given project.

o Plenty of user-friendly options are becoming increasingly
available.
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