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Random Error and 95% CIs

 If you ask most people, a 95% confidence interval 

from 1.1 to 2.3 means:
 There is a 95% chance that the true value is between 1.1. and 2.3

 This is not correct

 If statistical model is correct and no bias, a 
confidence interval derived from a valid test 
statistic will, over unlimited repetitions of the 
study, contain the true parameter with a frequency 
no less than its confidence level (e.g. 95%)
 Simple simulation helps make the distinction
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Simulate the height of 1000 people with a  

mean of 65 and std of 5

From the initial 1000, simulate 1000 datasets 

each drawn from the original of size 20 and for 

each calculate a mean and 95% CI
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How Often Did CI Contain the Truth?
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Full sample
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Outline

 How SimPLE started

 What we’ve done

 How you can do it

 Some examples

 Why it is important

Simulation Studies for Epidemiology
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DISCLAIMER:

I am not an expert in data 

simulations … 

and this is the point!
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A Useful SAS Book
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Motivation

 In my doctoral program I was always wanting a 

“confounded” dataset when TAing or getting ready 

for exams, yet at first I didn’t know how to create 

one
 Found out that in order to simulate it, you have to understand it well 

enough

 Started to realize what I didn’t know

 Started to realize I could figure out things myself

 I had a colleague who said that he took a class in 

which for every concept they learned, they had to 

simulate a dataset that illustrated that problem

8

11/3/2014Simulation Studies for Epidemiology



Boston University Slideshow Title Goes Here

Epi Doctoral Qualifier Question

Below is a shell table for a dataset on the relationship between 

an exposure E and an outcome D stratified by a covariate C. 

Assume that we could know each person in the study’s 

counterfactual susceptibility type (Type 1-4)*. Create a dataset with 

the following properties and fill in the table below:

1. The crude E-D relationship is confounded by C (by statistical criteria)

2. The C stratum-specific estimates of the E-D relationship are 

unconfounded (by statistical criteria)

3. P1 is not equal to Q1*

4. There is no effect measure modification by C of the ED relationship on 

the difference scale but there is effect measure modification on the 

relative scale
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*Greenland S, Robins J Identifiability, Exchangeability, and Epidemiological Confounding IJE 

1986; 15: 413-419
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So Was the Birth of SimPLE

 SIMulating Problems for Learning Epidemiology

 Goals:
 Bring together doctoral students from epidemiology and 

environmental health to learn

 Everyone contributes

 We are all beginners

 We all choose a topic to try to understand better

 Took us a few sessions to cover some very simple 

concepts and everyone was off and running
 Message: basic simulation for learning is not hard to do!
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What Have We Covered

 Simulating datasets 

 Simulating datasets with particular structures
 Confounding, collider bias, effect measure modification

 Simulating dataset from the main dataset with bias 
 Selection bias, measurement error

 Understanding M bias

 Quantitative bias analysis

 Dependent error

 Bootstrapping
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What Do I Consider a Simulation?

 Often we think of big scary, hairy simulations with 

lots of parameters to vary, complex error 

structures, lots of complex formulas and always 

done by a biostatistician

 I consider everything from
 Demonstration of a concept

 Creation of a static toy dataset with no randomness

 Creation of a dataset based on probabilities

 Varying parameters

 Simulating error, and error structures

 Big hairy simulations with lots of variation
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Simple Simulations
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Simulate an 

Exact Dataset 

 data summary;

 input exp out count;

 cards;

 1 1 25

 1 0 75

 0 1 50

 0 0 50

 ;

 run;

 proc freq data=summary; 

 tables exp*dis/nocol nopercent;

 weight count;

 run;

Simulation Studies for Epidemiology 11/3/2014
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Simulate an Exact 

Individual Level Dataset

 Create the 2x2 table
 data individual;

 do j = 1 to 25;

 exp = 1; dis = 1; output;

 end;

 do j = 1 to 75;

 exp = 1; dis = 0; output;

 end;

 do j = 1 to 50;

 exp = 0; dis = 1; output;

 end;

 do j = 1 to 50;

 exp = 0; dis = 0; output;

 end;

 run;

Simulation Studies for Epidemiology 11/3/2014

E+ E-

D+ 25 50

D- 75 50

Total 100 100
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Random Number Generators

 Often want to draw randomly from a 

distribution rather than create exact 

outputs

 SAS has lots of random number generators 

 RAND('BERNOULLI', probability);

 RANBIN(seed, # trials, probability);

 RANUNI(seed);

 RANTRI(seed,mode)

 RANNOR(seed,x);

 and more… see SAS documentation

Simulation Studies for Epidemiology 11/3/2014
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Simulate a Simple 

Dataset Probabilistically
 Pr(E+) is 50%

 Pr(D+) is 25% if E-

 Pr(D+) is 50% if E+

 data prob;
 do j = 1 to 10000;

 exp = rand(‘bernoulli’,0.5);

 if exp = 0 then dis = rand(‘bernoulli’,0.25);

 else if exp = 1 then dis = rand 
(‘bernoulli’,0.5);

 output;

 end;

 run;

Simulation Studies for Epidemiology
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DAGs to Simulate Data

 There are other ways, for 

me this is the simplest

 Can simulate from a 

regression model

 (See book for details)

 Can build complex error 

structures
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N=1000 per stratum

C should be associated with E and D

Crude C- C+

E+ E- E+ E- E+ E-

D+ D+ D+

D- D- D-

Total Total Total

Risk Risk Risk

RR RR RR
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0.050.2
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0.10.4
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160

640
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720
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840
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830

1000 1000

0.170.16

0.94
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RRCD|E- = 4 = (0.2/0.05)

RRCE = 4 = [(800/1000)/(200/1000)]
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Simulating DAGs: Confounding

 Define the baseline risks
 What % of people have C+?

 What % of people C- are E+

 What % of people C- and E- are D+

 Define effects (relative vs 

absolute)
 What is the RR/RD for C on E?

 What is the RR/RD for C on D?

 What is the RR/RD for E on D?

 Define interactions
 Do E and C interact to cause D? 

 If so, on what scale?
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E D

C
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Pr(C+ = 0.5)

Pr(E+|C- = 0.15) Pr(D+|C-,E- = 0.05)

RRCD = 2
RRCE = 2.5

RRED = 5
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 do j = 1 to 10000; * sample size;

 conf = rand(‘bernoulli’, 0.5); * sim confounder;

 if conf = 1 then         exp= rand(‘bernoulli’,0.15*2.5); * E|C+;

 else if conf = 0 then exp= rand(‘bernoulli’,0.15); * E|C-;

 if exp = 1 and conf =1 then        dis = rand(‘bernoulli’, 0.05*2*5);

 else if exp = 1 and conf =0 then dis = rand(‘bernoulli’, 0.05*5);

 else if exp = 0 and conf =1 then dis = rand(‘bernoulli’, 0.05*2);

 else if exp = 0 and conf =0 then dis = rand(‘bernoulli’, 0.05);

 output;

 end;

 run;

Simulate Confounding Probabilistically

Simulation Studies for Epidemiology 11/3/2014
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E DI G

F

R H

Simulating DAGs

 Find the independent nodes and simulate
 Specify probability

 Simulate nodes dependent on one arrow
 Specify probability in all levels of the arrows the leads into the node

 Simulate nodes dependent on only two arrows, etc.
 Specify probability in all levels of arrows that lead into the node

 Pay attention to scale, additive or multiplicative

 Pay attention to interaction (additive or multiplicative)

Simulation Studies for Epidemiology 11/3/2014
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Unmeasured Confounders

 Suppose I have data on E and D and 

want to simulate U?

 Now the E and D variables exist, can’t 

simulate E and D dependent on U and C

 Instead I need to simulate U based on 

the probability of being in any of the 8 

missing cells in the table 
 RRUD = 2.5, Pr(U+|E+) = 10% Pr(U+|E-) = 20% 
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E D

U

Crude U+ U-

E+ E- E+ E- E+ E-

D+ a  45 b 70 D+
A1 B1

D+
A0 B0

D- c 255 d 630 D-
C1 D1

D-
C0 D0

Total m 300 n 700 Total
M1 N1

Total
M0 N0

30 140 270 560

Simulation Studies for Epidemiology
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Unmeasured Confounders

 RRCD = 2.5 and

 So A1 = 9.8 and B1 =  26.9

 And we can now fill in the rest of the table
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Crude U+ U-

E+ E- E+ E- E+ E-

D+ a  45 b 70 D+
A1 B1

D+
A0 B0

D- c 255 d 630 D-
C1 D1

D-
C0 D0

Total m 300 n 700 Total
M1 N1

Total
M0 N0

30 140 270 560

11

1
1

NnNRR

bNRR
B

CD

CD




11

1

1
MmMRR

aMRR
A

CD

CD




9.8 26.9 35.2 43.1

20.2 113.1 234.8 526.9

3030030*5.2

45*30*5.2
1


A

140700140*5.2

70*140*5.2
1


B
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Unmeasured Confounders

 So now for any person, if I know their E and D I can tell 

you the probability of having U: 
 Pr(U+|E+,D+) = 9.8/45, Pr(U+|E+,D-) = 20.2/255

 Pr(U+|E-,D+) = 26.9/70, Pr(U+|E-,D-) = 113.1/630

 Code:
 if E=1 and D=1 then U = rand('bernoulli', 9.8/45);

 else if E=1 and D=0 then U = rand('bernoulli', 20.2/255);

 else if E=0 and D=1 then U = rand('bernoulli', 26.9/70);

 else if E=0 and D=0 then U = rand('bernoulli', 113.1/630);
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Crude U+ U-

E+ E- E+ E- E+ E-

D+ a  45 b 70 D+
A1 B1

D+
A0 B0

D- c 255 d 630 D-
C1 D1

D-
C0 D0

Total m 300 n 700 Total
M1 N1

Total
M0 N0

30 140 270 560

9.8 26.9 35.2 43.1

20.2 113.1 234.8 526.9

Simulation Studies for Epidemiology
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Three Posters Here at SER

 100-S Implications of Nondifferential Dependent 

Misclassification of Covariate and Exposure

 Kelly Getz and Alana Brennan 

 TUESDAY, JUNE 24, 2014 7-8:30 PM

 112-S Understating the Relationship between Directed 

Acyclic Graphs (DAGs) and Data through Simulation Studies

 Julia Rohr 

 TUESDAY, JUNE 24, 2014

 412-S When Does Adjustment for Predictors of Exposure 

Misclassification Increase Bias? A Simulation Study

 Samantha Parker and Mahsa Yazdy 

 WEDNESDAY, JUNE 25 5:00 – 6:30 pm
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Example: Dependent Error

 I had a student whom I 

asked to simulate 

dependent error to see 

when it mattered most

 A colleague had a student 

who wrote a paper on the 

same idea (Kelly Getz)

 We brought them together

 SimPLE was born
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