Biomarkers: the Good, the Bad and the Ambiguous

Enrique F. Schisterman, PhD
Epidemiology Branch – DESPR- NICHD
Outline

- Background
 - Limit of Detection Determination
 - Pooling Biomarkers
 - Limit of Detection
- Conclusions
- Hybrid and Case Only Design
Background

- **Biomarker**: A specific physical trait used to measure or indicate the effects or progress of a disease or condition

- Newly developed laboratory methods expand the number of biomarkers on a daily basis
Methodological Constraints

- Cost
- Measurement Error
- Causal Link to Disease
Outline

- Background

- **Limit of Detection Determination**
 - Pooling Biomarkers
 - Limit of Detection

- Conclusions

- Hybrid and Case Only Design
Reporting of Biomarker Data

- Reporting threshold is equal to 2.2

<table>
<thead>
<tr>
<th>ID</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3.1</td>
</tr>
<tr>
<td>2</td>
<td>1.5</td>
</tr>
<tr>
<td>3</td>
<td>8.4</td>
</tr>
<tr>
<td>4</td>
<td>0.8</td>
</tr>
<tr>
<td>5</td>
<td>5.4</td>
</tr>
<tr>
<td>6</td>
<td>3.2</td>
</tr>
<tr>
<td>7</td>
<td>2.0</td>
</tr>
<tr>
<td>8</td>
<td>5.8</td>
</tr>
<tr>
<td>9</td>
<td>13.4</td>
</tr>
<tr>
<td>10</td>
<td>2.5</td>
</tr>
<tr>
<td>11</td>
<td>1.9</td>
</tr>
<tr>
<td>12</td>
<td>6.1</td>
</tr>
</tbody>
</table>

- Report values < threshold as one half the value of the threshold
- Report values < threshold as ‘not detected’
Conventional Determination of the Limit of Detection (LOD)

BLANK SERIES
- 10.0
- 5.0
- 8.1
- 7.1
- 4
- 11.3
- 12.0
- 8.0
- 7.7
- 7.0

Mean = 8.02
Std Dev = 2.53

\[
LOD = (\mu_{blanks} + 3\sigma_{blanks}) = 15.6
\]
Example of LOD left-censored data

Blanks "True" biomarker

Better LOD?
Example of LOD left-censored data

Blanks

“True” biomarker

Observed biomarker (samples)
Why is this a problem?
Comparisons of PCBs in cases and controls

Effect size
Blanks
LOD
Variance in cases

Controls—mean OC
Cases—mean OC
Approaches for LOD/missing data

- Simplest approach is substitution
 - Under certain circumstances yield minimal bias
 - Conventionally, values below the LOD are usually
 1. replaced by a. zero; b. the LOD; c. LOD/2; d. LOD/\sqrt{2};
 2. excluded
 3. retained

- Model based approaches
 - Likelihood models (Perkins et al., AJE 2007)
 - Multiple imputation

Imputation and Distribution of Cases and Controls

- Imputation of zero for values < LOD
- Imputation of LOD/2 for values < LOD
- Imputation of LOD for values < LOD
- Imputation of LOD/2 for values < LOD
LOD Simulation

- **Purpose:** To evaluate the effect of the handling of values below the LOD on risk estimates.

- Simulated data from a normal and log normal distribution and varied:
 - Effect size
 - Variance of OCs in the exposure group
 - LOD level
 - Measurement error mean and variance
Effect of Handling of Values < LOD on %Bias

<table>
<thead>
<tr>
<th>Method for values < LOD</th>
<th>Effect size = 0.25 SD</th>
<th>Effect size = 2.0 SD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LOD high</td>
<td>LOD low</td>
</tr>
<tr>
<td>1. Replace by</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Zero</td>
<td>-59.0</td>
<td>-25.1</td>
</tr>
<tr>
<td>b. LOD</td>
<td>-187.1</td>
<td>-40.8</td>
</tr>
<tr>
<td>c. LOD/2</td>
<td>-71.3</td>
<td>-18.1</td>
</tr>
<tr>
<td>d. LOD/√2</td>
<td>-79.7</td>
<td>-15.9</td>
</tr>
<tr>
<td>2. Exclude (truncated)</td>
<td>-314.2</td>
<td>-265.3</td>
</tr>
<tr>
<td>3. Retain (observed)</td>
<td>-11.5</td>
<td>-11.7</td>
</tr>
</tbody>
</table>

LOD “low” indicates 1.6 SDs below the mean of controls, resulting in imputed values for a small number of data points. LOD “high” indicates 1 SD above the mean of the controls, resulting in imputed values for a large number of both controls and cases.
LOD—Conclusions

- Choice of how to handle values below the LOD can result in a loss of accuracy in estimating risk
- Retaining observed values below the LOD produces the least biased estimates
- Substitution of LOD/$\sqrt{2}$ for values below the LOD produces not terribly biased estimates
Outline

- Background
- Limit of Detection Determination
- **Pooling Biomarkers**
- Limit of Detection
- Conclusions
- Hybrid and Case Only Design
What is pooling?

- Physically combining several individual specimens to create a single mixed sample

- Pooled samples are the average of the individual specimens
Random Sample of Biospecimens

RANDOM SAMPLE:
Randomly select 20 samples

FULL DATA
N = 40 Individual Biospecimens
Pooling Biospecimens

FULL DATA
N = 40 Individual Biospecimens

POOLED DATA:
40 samples in groups of 2
LOD and Pooling

Unpooled Specimens

Pooled Specimens
Effect of Pooling on Markers Affected by an LOD
Comparison of the Number of Observations Above the LOD for Standard Normal Data
Efficiency of the Mean and Variance

Variance of Estimated Mean

Variance of Estimated Variance

- Full Data
- Pooled
- Random
Pooling and Random Sampling

- **Pooling advantages**
 - Reduces the number of assays we need to test
 - Estimates the mean extremely efficiently
 - Cost-effective

- **Random sampling advantages**
 - Reduces the number of assays we need to test
 - Very easy
 - Variance is estimated very well
Hybrid Design: Pooled—Unpooled

- Create a sample of both pooled and unpooled samples that takes advantage of the strengths of both the pooling and random sampling designs
 - Reduces number of tests to perform
 - Cuts overall costs
 - Gains efficiency (by using pooling technique)
 - Accounts for different types of measurement error without replications
 - Pooling error
 - Random measurement error
 - LOD
Setup of Hybrid Design

Hybrid Sample S: $X_1, \ldots, X_5, Z_1, \ldots, Z_{15}$

Unpooled: X_1, \ldots, X_5
Pooled: Z_1, \ldots, Z_{15}

In General

Hybrid Sample S: $X_1, \ldots, X_{[\alpha n]}, Z_1, \ldots, Z_{[(1-\alpha)n]}$

Unpooled: $X_1, \ldots, X_{[\alpha n]}$
Pooled: $Z_1, \ldots, Z_{[(1-\alpha)n]}$

α is the proportion of unpooled samples
In order to estimate the variance, α cannot be zero.

Schisterman EF et al, Stat Med 2010
Hybrid Design Example: IL-6

- Measured IL-6 on 40 MI cases and 40 controls

- Biological specimens were randomly pooled in groups of 2, for the cases and controls separately, and remeasured

- We want to evaluate the discriminating ability of this biomarker in terms of AUC
Hybrid Design Example: IL-6

<table>
<thead>
<tr>
<th></th>
<th>n</th>
<th>α_x</th>
<th>α_y</th>
<th>AUC</th>
<th>Var(AUC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empirical</td>
<td>40</td>
<td>1.00</td>
<td>1.00</td>
<td>0.640</td>
<td>0.0036</td>
</tr>
<tr>
<td>Hybrid design: Optimal α</td>
<td>20</td>
<td>0.40</td>
<td>0.35</td>
<td>0.621</td>
<td>0.0049</td>
</tr>
<tr>
<td>Random sample: $\alpha=1$</td>
<td>20</td>
<td>1.00</td>
<td>1.00</td>
<td>0.641</td>
<td>0.0071</td>
</tr>
</tbody>
</table>

Hybrid design reduced the variability of Var(AUC) by 32% as compared to taking only a random sample.
Summary—Hybrid Design

- Hybrid design is a more efficient way to estimate the mean and variance of a population
 - Cost-effective
- Yields estimate of measurement error without requiring repeated measurements
- Here we focus on normally distributed data, but can be applied to other distributions as well
Outline

- Background
- Limit of Detection Determination
- **Pooling Biomarkers**
 - Limit of Detection
- Conclusions
- Hybrid and Case Only Design
Evaluation GCSF and miscarriage risk

Measurement of GCSF

- Chemiluminescence assays
 - A 96-well plate
 - Antibody against the biomarker of interest
 - A set of standards of known biomarker concentration included in each batch
 - A set of unknowns for which we would like to know biomarker concentrations
 - A light emitting molecule that binds to bound biomarker
Measurement of cytokines by chemiluminescence assay

- Cytokines are not measured directly
 - Antibodies against analyte(s) coat wells
Measurement of cytokines by chemiluminescence assay

- Samples added, analyte binds to antibodies
- Unbound proteins is washed away
Measurement of cytokines by chemiluminescence assay

- A ‘tag’ is added to the assay that binds to the protein – antibody complex that produces color
- The intensity of the color is measured
Measurement of cytokines by chemiluminescence assay

- A ‘tag’ is added to the assay that binds to the protein–antibody complex that produces color
- The intensity of the color is measured
ELISA/multiplex layout

- Step 1: prepare antibodies mixture and add to plate
- Step 2: prepare calibrators, add to plate
- Step 3: prepare unknowns, add to plate
Use of chemiluminescence assays for measuring protein concentrations

- Use calibration to convert relative measures to the desired unit of concentration
 - from **optical density** in relative fluorescence units (RFU) to **concentration** in pg/mL

- Current practice is per assay calibration
 - Results in potentially large calibration datasets used only minimally in current practice
Calibrating the assay

The standard curve

Typical Data

This human G-CSF standard curve is provided only for demonstration. A standard curve must be generated each time an assay is run, utilizing values from the Standard Value Card included in the Base Kit.

<table>
<thead>
<tr>
<th>Standard</th>
<th>pg/mL</th>
<th>RFU</th>
<th>Average</th>
<th>Corrected</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blank</td>
<td>0</td>
<td>34</td>
<td>36</td>
<td>36</td>
</tr>
<tr>
<td>1</td>
<td>2400</td>
<td>12921</td>
<td>13165</td>
<td>13129</td>
</tr>
<tr>
<td></td>
<td></td>
<td>13409</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>800</td>
<td>7125</td>
<td>7217</td>
<td>7181</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7308</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>267</td>
<td>3042</td>
<td>3043</td>
<td>3007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3044</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>89</td>
<td>1008</td>
<td>1056</td>
<td>1020</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1103</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>30</td>
<td>322</td>
<td>338</td>
<td>302</td>
</tr>
<tr>
<td></td>
<td></td>
<td>353</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>10</td>
<td>127</td>
<td>132</td>
<td>96</td>
</tr>
<tr>
<td></td>
<td></td>
<td>136</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>67</td>
<td>70</td>
<td>34</td>
</tr>
<tr>
<td></td>
<td></td>
<td>72</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Calibrating the assay
The standard curve

This human G-CSF standard curve is provided only for demonstration. **A standard curve must be generated each time an assay is run**, utilizing values from the Standard Value Card included in the Base Kit.

- Potential variation in the relation between relative fluorescence and concentration
 - Chromophore potentially affected by temperature, humidity, etc
GCSF and miscarriage in the CPP

- Case-control study nested in the Collaborative Perinatal Project study cohort
 - 462 miscarriage case observations
 - 482 non-miscarriage control observations

- Serum biospecimens from early pregnancy, prior to miscarriage onset

- For $n = 944$, 24 assays were used
TABLE 2

Crude and adjusted odds ratio estimates from conditional logistic regression models of risk of miscarriage.

<table>
<thead>
<tr>
<th></th>
<th>Unadjusted models</th>
<th></th>
<th>Adjusted model a</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>OR</td>
<td>[95% CI]</td>
<td>OR</td>
<td>[95% CI]</td>
</tr>
<tr>
<td>Th1-type cytokinesb</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IL-1β</td>
<td>0.90</td>
<td>[0.77, 1.05]</td>
<td>0.76</td>
<td>[0.59, 0.97]</td>
</tr>
<tr>
<td>IFN-γ</td>
<td>1.01</td>
<td>[0.87, 1.18]</td>
<td>1.09</td>
<td>[0.91, 1.30]</td>
</tr>
<tr>
<td>TNF-α</td>
<td>0.92</td>
<td>[0.79, 1.08]</td>
<td>0.93</td>
<td>[0.77, 1.13]</td>
</tr>
<tr>
<td>Th2-type cytokinesb</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IL-1ra</td>
<td>1.01</td>
<td>[0.89, 1.14]</td>
<td>1.06</td>
<td>[0.90, 1.24]</td>
</tr>
<tr>
<td>IL-4</td>
<td>1.00</td>
<td>[0.86, 1.17]</td>
<td>1.05</td>
<td>[0.88, 1.25]</td>
</tr>
<tr>
<td>IL-6</td>
<td>0.99</td>
<td>[0.86, 1.15]</td>
<td>1.19</td>
<td>[0.96, 1.48]</td>
</tr>
<tr>
<td>Growth factorsb</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G-CSF</td>
<td>0.84</td>
<td>[0.72, 0.99]</td>
<td>0.78</td>
<td>[0.64, 0.95]</td>
</tr>
<tr>
<td>TPO</td>
<td>1.09</td>
<td>[0.95, 1.25]</td>
<td>1.16</td>
<td>[1.00, 1.36]</td>
</tr>
</tbody>
</table>

Note: OR = odds ratio; CI = confidence interval; IL = interleukin; RA = receptor antagonist; G-CSF = granulocyte colony stimulating factor; IFN = interferon; TNF = tumor necrosis factor; TPO = thrombopoietin.

a Adjusted model included terms for all cytokines, maternal age, and gestational age at sample collection.

b Biomarkers were standardized by dividing assay-determined concentration by the standard deviation among controls.

Circulating levels of cytokines during pregnancy: thrombopoietin is elevated in miscarriage

Brian W. Whitcomb, Ph.D., Enrique F. Schisterman, Ph.D., Mark A. Klebanoff, M.D., Mona Baumgarten, Ph.D., Xiaoping Luo, M.D., and Nasser Chegini, Ph.D.

<table>
<thead>
<tr>
<th>Factor</th>
<th>Unadjusted model</th>
<th>Adjusted model</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>OR [95% CI]</td>
<td>OR [95% CI]</td>
</tr>
<tr>
<td>GCSF</td>
<td>0.84 [0.72, 0.99]</td>
<td>0.78 [0.64, 0.95]</td>
</tr>
</tbody>
</table>

This estimate is based on the conventional batch specific approach
Objective

- **Question**: Is the current practice of standard batch-specific approach to calibration the best use of information?

- To evaluate the effect of different approaches for calibration models on models of risk

- To assess bias associated with different approaches
Data from the calibration experiments

- 24 batches, each with 7 known concentrations measured in replicate
 - Batches varied by
 - Shape
 - Location
 - Agreement between replicates
 - Presence of outliers
Batch 1 calibration curve - GCSF

Standard 1 – undiluted
(con = 6000 pg/mL)
Standard 2 – 1/3rd dilution (con = 2000 pg/mL)
Batch 2 calibration curve - GCSF

Measured optical density vs. Fixed ‘known’ concentration
Batch 3 calibration curve - GCSF

Measured optical density vs. Fixed ‘known’ concentration
Batch 6 calibration curve - GCSF

Measured optical density vs. Fixed ‘known’ concentration
Batch 9 calibration curve - GCSF

Measured optical density vs. Fixed 'known' concentration.
Batch 10 calibration curve - GCSF

Fixed ‘known’ concentration vs. Measured optical density
Batch 21 calibration curve - GCSF

Measured optical density vs. Fixed 'known' concentration.
Batch 22 calibration curve - GCSF

Measured optical density vs. Fixed 'known' concentration graph.
Batch 24 calibration curve - GCSF

Measured optical density vs. Fixed 'known' concentration
All calibration data (in log10)

Fixed ‘known’ concentration

Measured optical density
Effect of outliers on logistic regression results

<table>
<thead>
<tr>
<th>Calibration models</th>
<th>As observed</th>
<th>Outliers removed</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AOR</td>
<td>95%CI</td>
</tr>
<tr>
<td>Forward</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Collapsed</td>
<td>Linear</td>
<td>0.34</td>
</tr>
<tr>
<td>Batch specific</td>
<td>Linear</td>
<td>0.73</td>
</tr>
<tr>
<td>Mixed model</td>
<td>Linear</td>
<td>0.67</td>
</tr>
<tr>
<td>Collapsed</td>
<td>Curvilinear</td>
<td>0.21</td>
</tr>
<tr>
<td>Batch specific</td>
<td>Curvilinear</td>
<td>0.81</td>
</tr>
<tr>
<td>Mixed model</td>
<td>Curvilinear</td>
<td>~</td>
</tr>
<tr>
<td>Reverse</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Collapsed</td>
<td>Linear</td>
<td>0.37</td>
</tr>
<tr>
<td>Batch specific</td>
<td>Linear</td>
<td>0.63</td>
</tr>
<tr>
<td>Mixed model</td>
<td>Linear</td>
<td>0.43</td>
</tr>
<tr>
<td>Collapsed</td>
<td>Curvilinear</td>
<td>0.37</td>
</tr>
<tr>
<td>Batch specific</td>
<td>Curvilinear</td>
<td>0.86</td>
</tr>
<tr>
<td>Mixed model</td>
<td>Curvilinear</td>
<td>0.50</td>
</tr>
</tbody>
</table>
Simulation study

1. Generate dataset with: true biomarker concentration, true effect on risk; overall relation between concentration and RFU; batch variability, and; occasional outliers

2. Simulate calibration experiments to estimate RFU – concentration relation according to each approach

3. Assess bias and variance of estimators from risk models
Simulation study

the biomarker

Biomarker: $\exp(X \sim N(5,1))$

Miscarriage risk: $OR = 1.05, 1.15 \text{ or } 1.65$
$\beta = \{0.05, 0.14, 0.50\}$

Conc. and OD: OD determined through a single function
Summary of simulation study results
Comparison of shape, model for $\beta = 0.14$

Whitcomb et al, Epidemiology 2010
Conclusions

- Underestimation of effects due to calibration has implications for complex disease epidemiology

- Use of conventional batch-specific approaches performed poorly
 - Greatest bias to estimates in simulations
 - Most prone to loss of data for batches with failure of some calibration points