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Background

ÁBiomarker: A specific physical trait used to measure 
or indicate the effects or progress of a disease or 
condition 

ÁNewly developed laboratory methods expand the 
number of biomarkers on a daily basis



Methodological Constraints

ÁCost

ÁMeasurement Error

ÁCausal Link to Disease
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Reporting of Biomarker Data

ID Z

1 3.1

2 1.5

3 8.4

4 0.8

5 5.4

6 3.2

7 2.0

8 5.8

9 13.4

10 2.5

11 1.9

12 6.1

ωReporting threshold is equal to 2.2

ID Z

1 3.1

2 ND

3 8.4

4 ND

5 5.4

6 3.2

7 ND

8 5.8

9 13.4

10 2.5

11 ND

12 6.1

Report values < threshold as 
Ψƴƻǘ ŘŜǘŜŎǘŜŘΩ

ID Z

1 3.1

2 1.1

3 8.4

4 1.1

5 5.4

6 3.2

7 1.1

8 5.8

9 13.4

10 2.5

11 1.1

12 6.1

Report values < threshold as one half the 
value of the threshold 



Conventional Determination of the 
Limit of Detection (LOD)
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Example of LOD left-censored data

0 5 10 15 20 25 30 35

Blanks

ά¢ǊǳŜέ ōƛƻƳŀǊƪŜǊ

Better LOD?



Example of LOD left-censored data

0 5 10 15 20 25 30 35

Blanks

ά¢ǊǳŜέ ōƛƻƳŀǊƪŜǊObserved 
biomarker 
(samples)



CONTROLS

CASES

Why is this a problem?
Comparisons of PCBs in cases and controls

Controlsðmean OC Casesðmean OC

Effect size

Variance 

in casesLOD

Blanks



Approaches for LOD/ missing data

ÁSimplest approach is substitution 
ÁUnder certain circumstances yield minimal bias    

ÁConventionally, values below the LOD are usually 
1. replacedby a. zero; b. the LOD; c. LOD/2; d. LOD/Ҟн; 

2. excluded

3. retained

ÁModel based approaches
ÁLikelihood models (Perkins et al., AJE 2007)

ÁMultiple imputation

Schisterman EF, Vexler A, Whitcomb BW, Liu A. AJE 2006



Imputation of zero for values < LOD

Imputation of LOD/ Ç2 for values < LODImputation of LOD/2 for values < LOD

Imputation of LOD for values < LOD
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Imputation and Distribution of Cases and Controls



LOD Simulation

ÁPurpose: To evaluate the effect of the handling of 
values below the LOD on risk estimates

ÁSimulated data from a normal and log normal 
distribution and varied:

ÁEffect size

ÁVariance of OCs in the exposure group

ÁLOD level

ÁMeasurement error mean and variance



 Parameter values 
Effect size = .25 SD Effect size = 2.0 SD 

Method for values < LOD LOD high LOD low LOD high LOD low 

1. Replace by a. Zero -59.0 -25.1 -118.8 -114.2 
 b. LOD -187.1 -40.8 -365.2 -360.7 

c. LOD/2 -71.3 -18.1 -82.3 -118.5 
d. LOD/Õ2 -79.7 -15.9 -65.1 -119.2 

2. Exclude (truncated) -314.2 -265.3 -211.9 -248.0 
3. Retain   (observed) -11.5 -11.7 -12.10 -11.98 
 

Effect of Handling of Values < LOD on %Bias

ϝ[h5 άƭƻǿέ ƛƴŘƛŎŀǘŜǎ мΦс SDs below the mean of controls, resulting in imputed values for a 
ǎƳŀƭƭ ƴǳƳōŜǊ ƻŦ Řŀǘŀ ǇƻƛƴǘǎΦ  [h5 άƘƛƎƘέ ƛƴŘƛŎŀǘŜǎ м SD above the mean of the controls, 
resulting in imputed values for a large number of both controls and cases



LODτConclusions 

ÁChoice of how to handle values below the LOD can 
result in a loss of accuracy in estimating risk

ÁRetaining observed values below the LOD produces 
the least biased estimates

Á{ǳōǎǘƛǘǳǘƛƻƴ ƻŦ [h5κҞн ŦƻǊ ǾŀƭǳŜǎ ōŜƭƻǿ ǘƘŜ [h5 
produces not terribly biased estimates
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What is pooling?

ÁPhysically combining several 
individual specimens to 
create a single mixed 
sample

ÁPooled samples are the 
average of the individual 
specimens

1

2 p



Random Sample of Biospecimens

RANDOM SAMPLE: 

Randomly select 20 samples

FULL DATA

N = 40 Individual 
Biospecimens



Pooling Biospecimens

POOLED DATA: 

40 samples in groups of 2

FULL DATA

N = 40 Individual 
Biospecimens



LOD and Pooling
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Effect of Pooling on Markers Affected 
by an LOD

Un-pooled
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Comparison of the Number of Observations Above 
the LOD for Standard Normal Data



Efficiency of the Mean and Variance

Variance of Estimated Mean

Variance of Estimated Variance

FULL DATA POOLED RANDOMFULL DATA POOLED RANDOM



Pooling and Random Sampling

ÁPooling advantages

ÁReduces the number of assays we need to test

ÁEstimates the mean extremely efficiently

ÁCost-effective

ÁRandom sampling advantages

ÁReduces the number of assays we need to test

ÁVery easy

ÁVariance is estimated very well



Hybrid Design: PooledτUnpooled

ÁCreate a sample of both pooled and unpooledsamples 
that takes advantage of the strengths of both the 
pooling and random sampling designs

ÁReduces number of tests to perform
ÁCuts overall costs
ÁGains efficiency (by using pooling technique)
ÁAccounts for different types of measurement error without 

replications

ςPooling error
ςRandom measurement error
ςLOD



Unpooled: 
X1ΣΧΣ·5

Pooled: 
Z1ΣΧΣ½15

Hybrid Sample  S:X1ΣΧΣ·5,Z1ΣΧΣ½15

Setup of Hybrid Design

Unpooled: 
X1ΣΧΣ·[ nh]

Pooled: 
Z1ΣΧΣ½[(1- )hn]

In General
Hybrid Sample  S:X1ΣΧΣ·[ nh],Z1ΣΧΣ½[(1- )hn]

ihs the proportion of unpooled samples



Maximum Likelihood Estimators
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Schisterman EF et al, Stat Med 2010



Hybrid Design Example:  IL-6

ÁMeasured IL-6 on 40 MI cases and 40 controls

ÁBiological specimens were randomly pooled in 
groups of 2, for the cases and controls separately, 
and remeasured

ÁWe want to evaluate the discriminating ability of 
this biomarker in terms of AUC



Hybrid Design Example: IL-6

n xh yh AÛC Var(AÛC)
Empirical 40 1.00 1.00 0.640 0.0036
Hybrid design: Optimal h 20 0.40 0.35 0.621 0.0049
Random sample: hҐм 20 1.00 1.00 0.641 0.0071

Hybrid design reduced the variability of Var(AÛC) by 
32% as compared to taking only a random sample



SummaryτHybrid Design

ÁHybrid design is a more efficient way to estimate the 
mean and variance of a population

ÁCost-effective

ÁYields estimate of measurement error without 
requiring repeated measurements

ÁHere we focus on normally distributed data, but can be 
applied to other distributions as well
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Evaluation GCSF and miscarriage risk

Measurement of GCSF

ÁChemiluminescence assays

ÁA 96-well plate

ÁAntibody against the biomarker of interest

ÁA set of standards of known biomarker concentration 
included in each batch

ÁA set of unknowns for which we would like to know 
biomarker concentrations

ÁA light emitting molecule that binds to bound 
biomarker





Measurement of cytokines by 
chemiluminescence assay

ÁCytokines are not measured directly

ÁAntibodies against analyte(s) coat wells



Measurement of cytokines by 
chemiluminescence assay

ÁSamples added, analyte binds to antibodies

ÁUnbound proteins is washed away



Measurement of cytokines by 
chemiluminescence assay

Á! ΨǘŀƎΩ ƛǎ ŀŘŘŜŘ ǘƻ ǘƘŜ ŀǎǎŀȅ ǘƘŀǘ ōƛƴŘǎ ǘƻ ǘƘŜ ǇǊƻǘŜƛƴ ς
antibody complex that produces color

ÁThe intensity of the color is measured



Measurement of cytokines by 
chemiluminescence assay

Á! ΨǘŀƎΩ ƛǎ ŀŘŘŜŘ ǘƻ ǘƘŜ ŀǎǎŀȅ ǘƘŀǘ ōƛƴŘǎ ǘƻ ǘƘŜ ǇǊƻǘŜƛƴ ς
antibody complex that produces color

ÁThe intensity of the color is measured



ELISA/multiplex layout

ÁStep 1: prepare antibodies mixture and add 
to plate

ÁStep 2: prepare calibrators, add to plate

ÁStep 3: prepare unknowns, add to plate 



Use of chemiluminescence assays for 
measuring protein concentrations

ÁUse calibration to convert relative measures to the 
desired unit of concentration

Áfrom optical densityin relative fluorescence units (RFU)
to concentrationin pg/mL

ÁCurrent practice is per assay calibration

ÁResults in potentially large calibration datasets used only 
minimally in current practice



Calibrating the assay
The standard curve



Calibrating the assay
The standard curve

ÁPotential variation in the relation between relative 
fluorescence and concentration
ÁChromophore potentially affected by temperature, 

humidity, etc

This human G-CSF standard curve is 

provided only for demonstration. A 

standard curve must be generated each 

time an assay is run, utilizing values from 

the Standard Value Card included in the 

Base Kit.



GCSF and miscarriage in the CPP

ÁCase-control study nested in the Collaborative 
Perinatal Project study cohort
Á462 miscarriage case observations

Á482 non-miscarriage control observations

ÁSerum biospecimens from early pregnancy, prior to 
miscarriage onset

ÁFor n = 944, 24 assays were used





 Unadjusted model Adjusted model 

 OR [95% CI] OR [95% CI] 

Factor     
 GCSF 0.84 [0.72, 0.99] 0.78 [0.64, 0.95] 

 

This estimate is based on the conventional 

batch specific approach



Objective

ÁQuestion: Is the current practice of standard batch-
specific approach to calibration the best use of 
information?

ÁTo evaluate the effect of different approaches for 
calibration models on models of risk

ÁTo assess bias associated with different approaches



Data from the calibration experiments

Á24 batches, each with 7 known concentrations 
measured in replicate

ÁBatches varied by

ÁShape

ÁLocation

ÁAgreement between replicates

ÁPresence of outliers



Batch 1 calibration curve - GCSF
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Batch 1 calibration curve - GCSF
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Batch 2 calibration curve - GCSF
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Batch 3 calibration curve - GCSF
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Batch 6 calibration curve - GCSF
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Batch 9 calibration curve - GCSF
l o g o d

1

2

3

4

l o g c o n

0 1 2 3 4

M
e
a
s
u
re

d
 o

p
ti
c
a
l 
d
e
n
s
it
y

Fixed óknownô concentration



Batch 10 calibration curve - GCSF
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Batch 21 calibration curve - GCSF
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Batch 22 calibration curve - GCSF
l o g o d

1

2

3

4

l o g c o n

0 1 2 3 4

M
e
a
s
u
re

d
 o

p
ti
c
a
l 
d
e
n
s
it
y

Fixed óknownô concentration



Batch 24 calibration curve - GCSF
l o g o d
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All calibration data (in log10)

s i mp l e  l i n e a r
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Effect of outliers on logistic regression 
results

 

 

Calibration models As observed Outliers removed 
  AOR 95%CI AOR 95%CI 

Forward      
 Collapsed Linear 0.34 (0.13, 0.90) 0.27 (0.10, 0.73) 
 Batch specific Linear 0.73 (0.46, 1.17) 0.60 (0.33, 1.10) 
 Mixed model Linear 0.67 (0.39, 1.14) 0.56 (0.30, 1.06) 
 Collapsed Curvilinear 0.21 (0.05, 0.84) 0.25 (0.09, 0.71) 
 Batch specific Curvilinear 0.81 (0.57, 1.16) 0.98 (0.93, 1.02) 
 Mixed model Curvilinear ~ ~ ~ ~ 
      
Reverse      
 Collapsed Linear 0.37 (0.15, 0.91) 0.28 (0.11, 0.73) 
 Batch specific Linear 0.63 (0.37, 1.11) 0.58 (0.32, 1.07) 
 Mixed model Linear 0.43 (0.19, 0.94) 0.53 (0.27, 1.02) 
 Collapsed Curvilinear 0.37 (0.15, 0.91) 0.29 (0.11, 0.74) 
 Batch specific Curvilinear 0.86 (0.53, 1.41) 0.67 (0.38, 1.16) 
 Mixed model Curvilinear 0.50 (0.27, 0.95) ~ ~ 
 



Simulation study

1. Generate dataset with: true biomarker 
concentration, true effect on risk; overall relation 
between concentration and RFU; batch 
variability, and; occasional outliers

2. Simulate calibration experiments to estimate 
RFU ςconcentration relation according to each 
approach

3. Assess bias and variance of estimators from risk 
models



Simulation study

the biomarker

Biomarker: exp(X ~ N(5,1))

Miscarriage risk: OR = 1.05, 1.15 or 1.65  

=̡{0.05, 0.14, 0.50} 

Conc. and OD: OD determined through
a single function



Summary of simulation study results
Comparison of shape, model for ɓ= 0.14

Collapsed

Mixed

Batch-

specific

Linear Curvilinear Linear Curvilinear

FORWARDS REVERSE

ɓ̂

0.14

Whitcomb et al, Epidemiology 2010



Conclusions

ÁUnderestimation of effects due to calibration has 
implications for complex disease epidemiology

ÁUse of conventional batch-specific approaches 
performed poorly
ÁGreatest bias to estimates in simulations

ÁMost prone to loss of data for batches with failure of 
some calibration points


