Example of Bias Analysis: Influenza Vaccination Misclassification and Preterm Birth

Katherine Ahrens, MPH Boston University School of Public Health Slone Epidemiology Center at Boston University

Background: Flu shot

- CDC recommends all pregnant women be vaccinated for influenza
 - Vaccination rates increasing, but still low
 - Barriers to vaccination include concerns about risks to fetus
- Not many studies on influenza vaccination and pregnancy outcomes
 - Pregnant women excluded from most clinical trials
 - Recently published observational study found strong protective effect (40% reduction in risk)

Study Hypothesis

Influenza vaccination will be associated with a decreased risk of preterm birth

Prenatal Vaccination Exposure: Potential for Misclassification

- Medical records:
 - May not be accurate; many flu vaccinations outside of traditional medical settings
- Self-report:
 - Possibly better because captures full range of vaccine providers; but could be subject to NDME and/or DME (recall bias)

Slone Pregnancy Health Interview Study

- Case-control study
- Multicenter (Mass., RI, upstate NY, Philadelphia, San Diego)
- Hospital and vital records-based
- 1976 present

Mothers interviewed <6 months of birth</p>

 Medical history, pregnancy intention, medication use, demographics, smoking and alcohol consumption

Methods: Exposure Assessment

 Beginning in September 2006 all mothers were asked if they received any vaccines:

"such as tetanus, pertussis, whooping cough, meningitis, flu shot or any other vaccine" during the period two months before through the end of the pregnancy

If a single date not recalled, then asked to recall range of possible dates

Methods: Exposure Window
Exposure: any flu shot reported during 0-20 week's gestational age

Methods: Outcome

- Preterm < 37 weeks; full-term ≥ 37 weeks</p>
- Self-reported due date (usually ultrasound confirmed)
- Calculate gestational day of delivery using 280- (due date - baby's date of birth)

Methods: Validation Sub-study

- All women who reported influenza vaccination
 - Asked to sign vaccine medical release form
 - Date, vaccine type, manufacturer obtained from provider
 - Staff tracked validation efforts
- Very labor intensive

Methods: Regression

- Logistic regression
- Exposure: influenza vaccination 0-20 weeks
- Outcome: preterm (case) vs. full-term (control)
- Restricted to:
 - Infants without birth defects
 - Mothers reporting influenza vaccination 0-20 weeks or no prenatal influenza vaccination
 - N=1752

Methods: Bias Analysis

- Couldn't estimate sensitivity/specificity
- Could estimate: positive predictive value (PPV) of self-reported flu shot at any time before/during pregnancy
- PPV calculated using:
 - # confirmed flu shot
 - # self-reported flu shot
 - Separately estimated for preterm (cases) and full-term (controls) pregnancies

Methods: Tracking Status

Could only confirm flu shot if:

- Med release returned, provider could be reached + cooperated, and patient-level information was available
- 2 ways of calculating PPV:
 - Less conservative: Upper PPV estimate
 - If flu vaccination date was found, staff determined if inside/outside pregnancy dates
 - More conservative: Lower PPV estimate
 - Also included situations where no vaccination date was found or vaccination recalled was not actually flu shot

Methods: PPV Estimates

	Upper PPV	Lower PPV
Preterm	97%	79%
Full-term	95%	78%

- Similar PPV between preterm and full-term: supports NDME
- In addition to upper PPV, calculated a weighted average of upper/lower PPV

Epidemiology Center

Methods: PPV Beta Distributions

Preterm:

Methods: PPV Beta Distributions

Full-term:

Methods: Bias Analysis

- Negative Predictive Value
 NPV can be calculated using:
 - <u># confirmed no flu shot</u>
 # reported no flu shot
 - Separately for preterm and full-term
 - We didn't have this information from our validation sub-study

Methods: Bias Analysis

- Alternative calculation of NPV
 - NPV= (<u>spec)(1-Pe)</u>

(spec)(1-Pe) +(1-sens)(Pe)

- uses prevalence of self-reported exposure (Pe)
- sensitivity/specificity from 2007 Mangtani validation study, asked about flu shot in last 12 months
 - Among 354 elderly persons in UK
 - Sens= 190/201=93%; Spec= 138/153=85%

Methods: NPV Model Preterm:

18

Methods: NPV Model Full-term:

NPV %

19

Methods: Observed data

	Vaccinated	Not vaccinated
Preterm	35 (9%)	104 (7.6%)
Full-term	353	1260
All	388	1364

OR, Crude: 1.20 (0.80, 1.79)
 OR, Adjusted: 1.21 (0.79, 1.88)
 For maternal race, multifetal gestation

Methods: Simulation Example

Rep=1	
Rep=2	
Rep=3	

- 100,000 datasets stacked
- Look at Replication=1:
 - PPVpreterm=0.88
 - PPVfull-term=0.75
 - NPVpreterm=0.97
 - NPVfull-term=0.97
- 388/1752 records where observed exposure status =1; after bias correction, now 334
- 1364/1752 records where observed exposure =0; after bias correction now 1416
- Simulation Rep 1 Adj OR=1.61

Rep=100,000

Results: Gestational Age

Gestational Weeks

Simulated Distribution of Obs OR OBS OR 1.21 (0.79, 1.88)

Bias Adjusted OR

OBS OR 1.21 (0.79, 1.88)

Upper PPV

Bias Adjusted OR + Random Error OBS OR 1.21 (0.79, 1.88) Upper PPV

25

Bias Adjusted OR

OBS OR 1.21 (0.79, 1.88)

Average PPV

Bias Adjusted OR + Random Error OBS OR 1.21 (0.79, 1.88) Average PPV

Conclusion:

- Appears to be a near null effect of influenza vaccination during 0-20 week's gestation on risk of preterm birth
- Adjustment for misclassification of exposure changed estimates minimally
- General study limitations:
 - No information on effect of flu shot on miscarriage, stillbirth, early preterm risk

Possible Bias Model Limitations

- Other predictors of PPV? Education, GA, age...
- Applicability of overall prenatal PPV estimate to our 0-20 week window?
- Applicability of NPV from external validation study?
 - Back-calculated PPV: 83%
- NPV calculation used observed prevalence of exposure, some error

Advantages: Bias Modeling

- Using record level modeling, so could still adjust for confounders
- SAS code was straightforward
- Now more confident that misclassification of vaccination status is not what is accounting for observed near null results
- Useful to see no (major) differential exposure misclassification based on preterm/full-term status

Disadvantages: Bias Modeling

- To do bias modeling with internal validation data can be expensive and labor intensive
 - Other exposures/methods could be cheaper to validate; very cheap to use external validation data
- Explaining methods, results, and limitations of bias modeling takes up space
 - Worth it to assess possible bias that could be much larger issue than random error

Collaborators

- Martha Werler
- Timothy Lash
- Carol Louik
- Allen Mitchell
- Preliminary analysis; incomplete data
- Sponsored by T32 HD052458 Boston University Reproductive, Perinatal and Pediatric Epidemiology training program

THANK YOU

