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Outline
▪ Epigenetics

▪ Working understanding of Epigenetics

▪ DOHaD
▪ Fetal epigenetic programming 

▪ Applications to Birth Cohorts
▪ Methods/tools in Epigenetic Epidemiology 

▪Methods & Study Design Considerations
▪ Strengths and Limitations 

▪ Examples - Implementation
▪ Interpreting studies
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Central Dogma of Molecular Biology
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▪ Replication (DNA -> DNA) 

▪ Transcription (DNA -> RNA)

▪ Translation (RNA-> Protein)
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Universal Code of Life
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Image credit: https://geneed.nlm.nih.gov

https://geneed.nlm.nih.gov/
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DNA Inside the Cell 
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▪One human cell ~2 meters DNA (6.6 ft)
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Common Epigenetic Modifications

▪ DNA Methylation

▪ Histone Modifications

▪ Non-coding RNAs
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Developmental Origins of Health and Disease 
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▪ Barker’s hypothesis 
▪ Fetal programming of adult disease

▪ Low birth weight/size -> disease (CHD)

▪ Epigenetics as a potential mechanism/biomarker
▪ Interface between genome and the environment
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Relative risk of coronary heart disease among
13,249 men born in Hertfordshire and Sheffield

Martyn, CN. et al., The Lancet 348.9037 (1996)
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Epigenetics

Epigenetics
▪ Changes in gene expression that:

▪ Do not depend on the DNA sequence

▪ Can be stable
▪ Through cell division (mitotically stable)

▪ Transgenerational inheritance

(limited evidence in humans)

▪ May persist even in the absence of the 

conditions that established them 

(Biological memory-> Biosensor) 
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Epigenetics - Fetal Programming in Utero

Adapted from F. Perera & J. Herbstman  Reproductive Toxicology 31.3 (2011): 363-373
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Critical window
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DNA Methylation - Fetal Programming in Utero
▪ DNAm as a molecular switch

▪ Genomic regions associated with tissue differentiation and oncogenesis
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DNAm: tissue specificity

▪ Epigenetics contributes to tissue 
differentiation

▪ Epigenetic marks are cell-type and tissue 
specific

▪ Each cell type has a unique epigenetic 
signature

▪ A challenge and opportunity for 
epidemiological studies
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Early Life Exposure & Disease Risk

Lifecourse epidemiology

Newborn health
Internal

dose

Maternal exposure

Epigenome

▪ Epigenome: biomarkers of exposure and response to the early life environment

Paternal exposure
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Epigenetics
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(Biological Memory) (Epigenetic Programming)

(Snapshot of the future)(Window into the past)

Library
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Epigenetics
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Vocabulary 

Feinberg, Andrew P. NEJM 378.14 (2018): 1323-1334
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▪ DNA Methylation (DNAm): A covalent epigenetic modification of the nucleotide cytosine, 
which is heritable (cell-division)

▪ CpG site: Cytosine followed by a Guanine nucleotide

▪ Epigenome: The epigenetic information in a cell, comprising DNA methylation, post-
translational modifications of histones and higher-order chromatin structure

▪ EWAS: Epigenome-Wide Association Study. Usually referring to genome-wide DNAm 

▪ Genomic imprinting: Parent-of-origin–specific epigenetic marks generally associated with 
comparative silencing of the allele transmitted to the offspring
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The Agouti Mouse-Model
▪ Exposure to BPA in utero and DNAm of the Avy locus

Dolinoy, DC., et al. PNAS. 104.32 (2007)

BPA Exposure
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Candidate Gene Approach
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▪ IGF2 (insulin-like growth factor II):

▪ Maternally imprinted

▪ Similar structure to insulin & promotes growth during gestation

▪ Highly active during fetal development

▪ Dutch Hunger Winter (German-occupied Netherlands):

▪ Severe caloric restriction during gestation

▪ Exposed individuals compared to same-sex siblings (unexposed)
Heijmans, BT., et al. PNAS 105.44 (2008): 17046-17049
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Candidate Gene Approach
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▪ Prenatal famine exposure associated with lower DNAm of IGF2
Early gestation Late in gestation

Heijmans, BT., et al. PNAS 105.44 (2008): 17046-17049
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DNAm: Human Studies
▪ Look at candidate genes

▪ ~20,000 genes x 100 - 1,000s of CpGs

▪ High density microarrays (agnostic approach)

▪ Covers 99% of the RefSeq. genes

▪ Screens >850,000 CpG sites (EPIC) / 450K CpGs (450K)

▪ Single nucleotide resolution

▪ Hypothesis-free Epigenome-Wide Association studies (EWAS)

▪ High dimensional genomic data

▪ Parameters >> N

19



Andres Cardenas

Costs/Sample size
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Courtesy of Britt Flaherty, PhD (Illumina, 2017) 

Pyrosequencing



Andres Cardenas

Study Design Considerations 
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▪ Periconception period
▪ Questioners
▪ Bio-specimens

▪ Birth 
▪ Questioners
▪ DNA isolation (placenta/CB)

▪ Processing  
▪ Storage 
▪ Analyses

▪ Analyses
▪ Hypothesis testing 
▪ EWAS
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Processing: Bioconductor 
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▪ Open source, open development software project

▪ Based primarily on the R programming language

▪ Widespread access to a broad range of omics tools

▪ Complete workflows for epigenomic data

▪ Enables high-quality documentation and reproducible research

https://www.bioconductor.org/

https://www.bioconductor.org/
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Analysis Pipeline
Quality control 

• Exclude low quality samples
• Exclude problematic probes

Normalization
• Background correction
• Dye-bias adjustment
• Probe-type bias

Batch adjustment
• ComBat: sample plate/chip

Global differences
• PCA 
• Heatmaps/clustering

CpG-by-CpG
• Linear robust regression
• limma

Regional DNAm analysis
• bumphunting
• DMRcate

Interpretation

Cell-type adjustment

• Low intensity probes
• Cross-reactive probes
• SNP probes (MAF>1%)
• Non CpG probes
• Allosomal probes
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Quality Control of Samples
▪ Sex-prediction 
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Normalization
▪ Removing unwanted variation in microarray data (technical variation)

▪ Background correction (between-array variation)
▪ Dye-bias adjustment
▪ Batch effects
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Plate

Plate Associations with Top three PCs

Raw PCA Fun-Norm PCA Fun-Norm + ComBat Adjusted

Principal Component Variance explained P-value Variance explained P-value Variance explained P-value

PC1 37.8% <0.001 24.1% <0.001 19.8% 0.99

PC2 16.7% <0.001 9.4% 0.001 8.7% 0.95

PC3 6.2% <0.001 6% <0.001 4.5% 0.99
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Batch effects 
▪ Batch effects can completely ruin experiments!
▪ How are batch effects generated?

Harper, KN et al. Cancer Epidemiol Biomarkers Prev. (2013) 22.6 : 1052-1060.
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Batch effects: a cautionary tale

Significant CpGs
Run One 

(Non-Randomized)
Run Two 

(Randomized)

No chip adjustment 1,203 0

Chip adjustment 24,184 187

Overlap 25
Harper, KN et al. Cancer Epidemiol Biomarkers Prev. (2013) 22.6 : 1052-1060.
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PCA: a tool for high dimensional data

Teschendorff et al. PLoS One (2009); e8274.

P<10-10

10-10 <P<10-5

10-5<P<0.01
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PCA: a tool for high dimensional data

Teschendorff et al. PLoS One (2009); e8274.

▪ If known batch effects can be adjusted
▪ Sample plate is a good surrogate batch variable
▪ Randomization of samples is key!

P<10-10

10-10 <P<10-5

10-5<P<0.01
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EWAS: CpG-by-CpG Analysis
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▪ “Backbone” of all DNAm analyses

▪ Fit adjusted linear model for each CpG (450-850K models)

▪ Estimate coefficients and P-values (decide on significance a priori)

▪ Several methods/models
▪ OLS
▪ Linear robust regression
▪ Limma
▪ t-test

▪ Model methylation on native β-scale or M-value
▪ β-values (0-1)
▪ Logit transformation of β-values -> M-values
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CpG-by-CpG Analysis
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▪ Fitting a statistical model
▪ Assumptions still apply

▪ Confounding

▪ Mediators/colliders etc. 

▪ Think about the model carefully
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Multiple testing burden (omics) 
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▪ Experimental design testing many features (CpGs, SNPs, miRNA, etc.)

▪ Example: Illumina’s EPIC chip (~850K tests)

Correct 
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#-tests
Probability
Type I error

False
Discoveries
(Expected)

1 5% 0.05

2 10% 0.10

3 14% 0.15

4 19% 0.20

5 23% 0.25

…. …. ….

450K ~100% 22,500

850K ~100% 42,500
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EWAS: multiple testing burden (omics) 
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▪ Bonferroni correction (α/850,000): P<5.8x10-8
▪ Bonferroni correction: increases type II errors
▪ We can control the FDR at 0.05
▪ Controlling the FDR: q-value

Histogram of null P-values

Estimated null distribution

Storey & Tibshirani PNAS 100.16; 440-445 (2003)
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Population Stratification
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▪ Spurious association of cases with the blue SNP feature (similar with CpGs)

Balding DJ, Nature Reviews Genetics (2006): 7.10 781.
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DNA methylation – cellular heterogeneity
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▪ Cell-types have a “unique” DNA methylation fingerprint

E.A. Houseman et al. BMC Bioinformatics (2012) 86; 13.1

Blood commonly used in Epidemiological studies! 
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Population stratification
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▪ Adjustment for blood cell-type composition is possible

▪ Adjustment reduces confounding and improves genomic inflation

E.A. Houseman et al. Curr Env Health Rept (2015); 2.2 145-154  
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Population stratification
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▪ Adjustment for blood cell-type composition is possible

▪ Adjustment reduces confounding and improves genomic inflation

E.A. Houseman et al. Curr Env Health Rept (2015); 2.2 145-154  
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Population stratification
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▪ Q-Q plots and lambda (λ) values are useful to evaluate population stratification

▪ λ can help detect systematic bias and population stratification

▪ Healthy Q-Q plot

Shenker et al. Hum. Mol. Genet. (22.5 (2012): 843-851.
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Manhattan plots: CpG-by-CpG Analyses
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▪ Help identify more relevant biological signal

▪ Regional analyses are complementary to single site analyses

Bonferroni 
FDR

Cardenas, A., et al. Diabetes (2018 Epub.)
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Regional Analyses 
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▪ CpG-by-CpG analyses: are we using the right tools?

▪ What about CpGs that are close to each other (correlated)

▪ Methods are now available to model clusters of CpGs
▪ Bump-hunting (Jaffe, et al. Int J Epidemiol, 2012)

▪ Comb-P (Pedersen, et al. Bioinformatics, 2012)

▪ DMRcate (Peters, et al. Epigenetics Chromatin, 2015)

▪ Aclust (Tamar, et al. Bioinformatics, 2013)

▪ Probe Lasso (Butcher, et al. Methods, 2015)

Promoter region

CpG island

Gene body
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Target tissue

42

▪ Think about the cell-type composition of tissue
▪ Blood: DNA from leukocytes
▪ Cord blood: DNA from leukocytes and nucleated RBCs
▪ Placenta: trophoblast, endothelial cells, vascular tissue, etc. 

▪ Relevance for the disease/exposure of interest
▪ Cardiovascular disease  blood might be OK
▪ Cognition  Is blood relevant?

▪ Aim: discovery of biomarkers or mechanism?
▪ Accessibility vs. biological relevance 

▪ Top CpG sites might be passengers or drivers of associations
▪ Causal claims must be critically examined
▪ Replication ensures generalizability
▪ Mendelian randomization methods
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Cell Mixture in Epidemiological Studies
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▪ Cell mixture remains an issue for other commonly used tissues
▪ Placenta
▪ Buccal cells
▪ Nasal cells 

▪ Reference free methods for adjustment are available
▪ EWASher (Zou, et al. Nature Methods, 2014)

▪ RefFreeEWAS (Houseman, et al. Bioinformatics, 2014)

▪ ReFACTor (Elior, et al. Nature Methods, 2016)

▪ MeDeCom (Pavlo, et al. Genome Biology, 2017)

▪ Assumes that some factors reflect cell-type distribution (SVA, PCA, etc..)

▪ Improvement of signal to noise ratio

▪ Overcorrection is a risk with reference-free methods
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EWAS: Example 
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▪ Dutch Hunger Winter  
▪ Prenatal famine exposure

▪ <900 kcal/day

▪ DNAm in whole blood 
▪ Illumina 450K ~ 450,000 CpGs

▪ Serum triglycerides
▪ BMI

Tobi, EW., et al. Science Advances 4.1 (2018): eaao4364.
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EWAS: Example 
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▪ Mediation on triglycerides levels and BMI 

Tobi, EW., et al. Science Advances 4.1 (2018): eaao4364.
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Future: Biomarker Development 
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▪ DNAm in cord-blood predicts (prenatal) maternal smoking (3-24 CpGs) 

Reese, SE., et al. Environmental Health Perspectives 125.4 (2017): 760
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Future: Biomarker Development 
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▪ DNAm of blood in adults predicts (prenatal) maternal smoking 

▪ 15 CpGs predicting prenatal smoking
▪ AUC= 0.72 (95% CI: 0.69, 0.76)
▪ Persistence of signature 

Richmond, R. et al. International Journal of Epidemiology (2018) Epub.
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Future: Biomarker Development 
▪ Nasal Methylome

▪ In direct contact with the environment 

▪ Different tissues give you different information
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Asthma prediction

Cardenas, A., et al. (In Preparation) 
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A note on effect sizes: smoking – DNAm
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Joubert, Bonnie,  et al. Environmental Health Perspectives. (2012) 
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Epigenetic Clock (DNAm Age) 
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▪DNAm age (Horvath clock)
▪ Highly correlated with chronological age  
▪ Accelerated by environmental exposures
▪ Predicts mortality
▪ Multi-tissue predictor

Horvath, Steve. Genome Biology 14.10 (2013)
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Age Acceleration: DNAm Age > Chronological Age
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Marioni, Riccardo E., et al. Genome Biology 16.1 (2015): 25 & Zhang, Yan, et al. Nature Communications 8 (2017): 14617
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Public Health Significance
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Malleable

Relton C. & Davey-Smith G. International Journal of Epidemiology 41.1 (2012): 5-9

Primary  & Primordial
Prevention
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Limitations
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Relton C. & Davey-Smith G. International Journal of Epidemiology 41.1 (2012): 5-9



Andres Cardenas

Summary 
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▪ Epigenetics as the interface between the genome and the environment
▪ Address hypothesis on fetal origins of adult disease 
▪ Develop biomarkers of exposures and outcomes
▪ Powerful tool for birth cohorts & early life events

▪ Study considerations
▪ Big data does not circumvent epidemiological issues
▪ Design matters (case-control/prospective/retrospective)
▪ Collect relevant tissues/samples at appropriate time-points

▪ Analytical issues 
▪ Sample size (Parameters>>N)
▪ Randomize samples and ensure balance by trait of interest
▪ Collaborative science

▪ Welcome to the Epigenetic Revolution!
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Planning and Analyzing DNA Methylation Studies
Columbia University – New York City

• 2-day Boot Camp – Instructors with 40+ years of combined epigenetics experience 
from Columbia, Harvard, and Icahn School of Medicine at Mount Sinai

• Learn more & sign up to hear about next course: mailman.columbia.edu/bootcamp

mailman.columbia.edu/bootcamp


Andres Cardenas

Resources
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▪ Coursera free online class: Epigenetic Control of Gene Expression
▪ https://www.coursera.org/learn/epigenetics

▪ NIH Roadmap Epigenomics Project
▪ http://www.roadmapepigenomics.org/

▪ Bioconductor workflow for data analysis
▪ https://f1000research.com/articles/5-1281/v3

▪ DNA methylation: roles in mammalian development
▪ https://www.nature.com/articles/nrg3354

▪ Consortium: Pregnancy And Childhood Epigenetics (PACE) 
▪ https://www.niehs.nih.gov/research/atniehs/labs/epi/pi/genetics/pace/index.cfm

https://www.coursera.org/learn/epigenetics
http://www.roadmapepigenomics.org/
https://f1000research.com/articles/5-1281/v3
https://www.nature.com/articles/nrg3354
https://www.niehs.nih.gov/research/atniehs/labs/epi/pi/genetics/pace/index.cfm
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Contact: cardenas@hsph.harvard.edu

Discussion & Questions

57@cardenaasca

mailto:cardenas@hsph.harvard.edu
https://twitter.com/cardenaasca

