Dependent Nondifferential Misclassification of Exposure

DISCLAIMER:

I am **REALLY** not an expert in data simulations ... or misclassification

Outline

- Relevant definitions
- Review of implications of dependent nondifferential misclassification of exposure and outcome
- Extension to dependent nondifferential misclassification of exposure and covariate
- Simulation Results dependent misclassification of exposure and covariate

Review: Exposure Misclassification

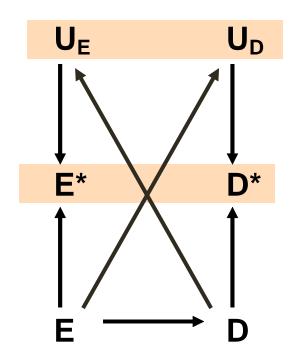
Nondifferential

- mechanisms that will on <u>average</u> produce <u>equal</u> exposure misclassification probabilities for cases and controls or diseased and nondiseased
- Se and Sp of exposure classification is equal in each true category of outcome

Differential

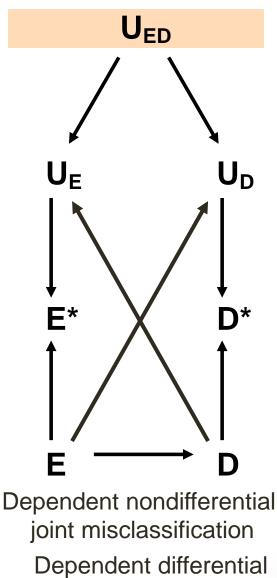
- mechanisms that will on <u>average</u> produce <u>unequal</u> exposure misclassification probabilities for cases and controls or diseased and nondiseased
 - e.g., recall bias

Review: Exposure Misclassification


Independent

 likelihood of exposure misclassification is NOT predicted by likelihood of misclassification in another variable (e.g., outcome, confounder)

Dependent


- likelihood of exposure misclassification <u>IS</u> predicted by likelihood of misclassification in another variable (e.g., outcome, confounder)
- shared mechanism

Causal diagrams for measurement bias¹ U_{ED}

Independent nondifferential joint misclassification Independent differential joint misclassification

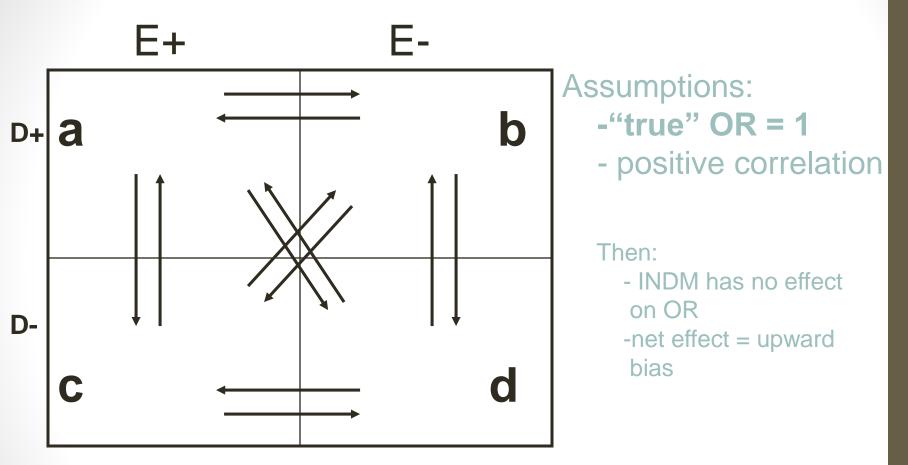
1. Hernan and Cole. Am. J. Epidemiol. (2009) 170 (8)

joint misclassification

Dependent Misclassification: Mechanisms

- Consistency motif
 - Ex. Saturated fat intake and child obesity
- Implicit theories
 - Ex. NSAID use and GI bleeding
- Social desirability
 - Ex. Flossing and dental caries
- Leniency
 - Ex. Sleep duration and BMI
- Positive/negative affectivity
 - Ex. Neighborhood safety and physical activity
- Transient mood state
 - Ex. EMS response time and recovery from head injury

1.Podsakoff et al. J Appl Psychol 2003;88(5).


Dependent Misclassification

- Most likely to occur when information on exposure and other variable come from same source
 - Perhaps worst in studies where exposure and outcome being reported at same time (i.e., cross-sectional)
- Usually self-report but could be other mechanisms
 - e.g., expert review assignment of both exposure and outcome or covariate

Review: Misclassification

- 70% of original research articles do not evaluate the impact misclassification¹
 - Most centered on independent, nondifferential scenario
 - A reliance on the mantra nondifferential misclassification = bias toward the null
- To date research into implications has focused on dependent misclassification of exposure and outcome

Implications- when "true" OR = 1

Rearrangement resulting from error in classification of E and O

Magnitude of bias depends on P(E+), P(D+) and Pr(DNDM)

Dependent Classification of E and D:

Implications- when "true" OR = 1

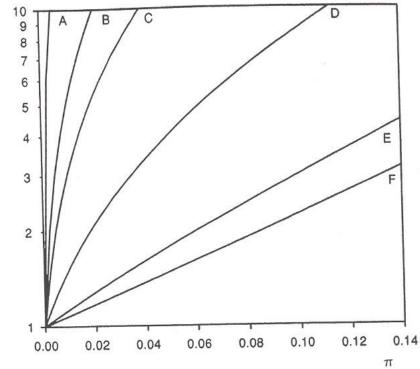


FIGURE 3. Observed odds ratio (OR') (logarithmic scale) as a function of the probability of nonindependent misclassification of exposure and outcome (π), for different true prevalences of exposure and outcome (A-F), given that the true odds ratio = 1. True exposure and outcome prevalences: A = 0.05, 0.01; B = 0.05, 0.05; C = 0.1, 0.05; D = 0.2, 0.1; E = 0.3, 0.3; F = 0.5, 0.5.

Kristensen P. Epidemiology 1992;3:210-215.

OR

Dependent Classification of E and D: Effect of Under- vs Over-reporting

\mathbf{p}_{d}	p _e	Pi	q	Over ^a	Under ^b	Both ^c
0.1	0.2	0.9	0.82	1.25	1.02	1.29
0.1	0.2	0.9	0.83	1.55	1.03	1.63
0.1	0.1	0.8	0.65	1.22	1.02	1.24
0.1	0.1	0.8	0.67	1.77	1.06	1.87
0.1	0.1	0.8	0.69	2.56	1.09	2.79
0.05	0.2	0.9	0.82	1.34	1.02	1.37
0.05	0.2	0.9	0.83	1.76	1.03	1.84
0.05	0.1	0.8	0.65	1.25	1.02	1.28
0.05	0.1	0.8	0.67	1.93	1.05	2.02
0.05	0.1	0.8	0.69	2.93	1.09	3.15
0.01	0.2	0.9	0.82	1.46	1.02	1.49
0.01	0.2	0.9	0.83	2.08	1.03	2.15
0.01	0.1	0.8	0.65	1.30	1.02	1.31
0.01	0.1	0.8	0.67	2.11	1.05	2.19
0.01	0.1	0.8	0.69	3.39	1.09	3.56

Assumes "true" OR=1 Effect of overreporting >> effect of underreporting Cross-sectional studies most likely to be healthy unexposed

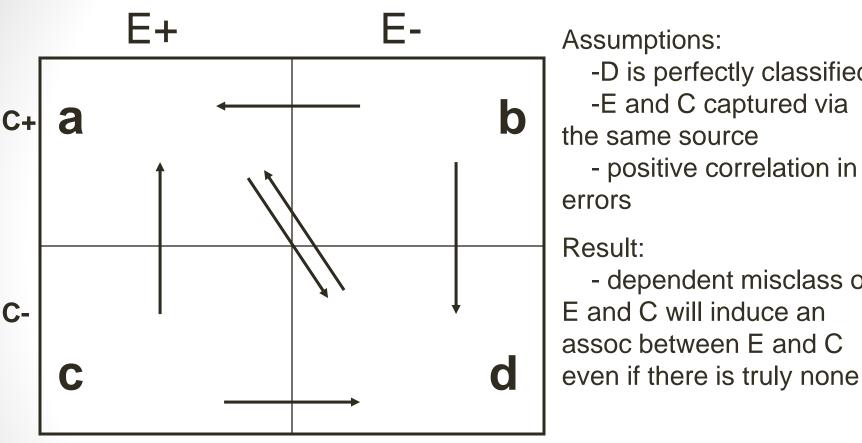
Pd=outcome prevalence; Pe=exposure prevalence; Pi=marginal sensitivity and/or specificity; q=probability of correct classification for subjects at risk of correlated misclassifications

- ^a Overreporting with specificities = Pi
- ^b Underreporting with sensitivities = Pi

^c Over and under reporting with Se and Sp = Pi

Chavance M. Int J Epidemiol 1992;21(3):537-546.

Dependent Classification of E and D:


Main solutions

- Separate sources of exposure and outcome information
 - Questionnaires, raters
 - Some areas of inquiry more likely to have same sources
- Design of interview/questionnaire
 - Type of question: "objective" vs. "subjective"

PROBLEM: What about dependent misclassification of exposure and covariate?

- Even if exposure and outcome are determined from different sources, covariate and exposure information are typically measured by a common methods
 - What implications on observed measure of association?
 - Conventional wisdom: adjustment for a confounder that is nondifferentially misclassified results in partial control (some residual confounding)
 - Is this true even if errors in confounder classification are correlated with errors in exposure?

Dependent misclassification of exposure and covariate

Rearrangement resulting from error in classification of E and C

-Impact on observed crude and adjusted measures of association?

-D is perfectly classified

- positive correlation in

- dependent misclass of

Assumptions

- C is a risk factor for D
- Misclassification of E and C is **positively correlated and nondifferential**
 - High threshold on both or low threshold on both
- No other bias

1. First simulate the 'truth'

data misclass_DEP;

p_E	=0.1;	* Exposure Prevalence;
p_D	=0.1;	* Disease Prevalence;
p_C	=0.1;	* Covariate Prevalence;

RR_ED=2;	* RR of D for E+ vs E-;
RR_CE=1.5;	* RR of E for C+ vs C-;
RR_CD=4;	* RR of D for C+ vs C-;

/* Create data set with N=100000 */

do j = 1 to 100000;

* simulate C independent of E and D; C=ranbin(-1,1,min(p_C,1));

* simululate E dependent on C; if C = 1 then E = ranbin(-1,1,min(RR_CE*p_E,1)); else if C = 0 then E = ranbin(-1,1,min(p_E,1));

```
* simulate D based on the baseline risk of D and the C and E variables;
if C = 1 and E = 1 then D = ranbin(-1,1, min(p_D * RR_CD * RR_ED,1));
else if C = 1 then D = ranbin(-1,1,min(p_D * RR_CD,1));
else if E = 1 then D = ranbin(-1,1,min(p_D * RR_ED,1));
else D = ranbin(-1,1,min(p_D,1));
```

2. Define misclassification probabilities

/* Dependendent Misclassification Prevalences */

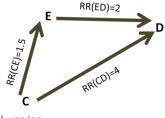
joint = 0.05;

ab=0.0; ac=0.0; ad= joint; ba= joint; bc=0.0; bd= joint; ca= joint; cb=0.0; cd= joint; da= joint; db=0.0;

X = ranuni(-1);

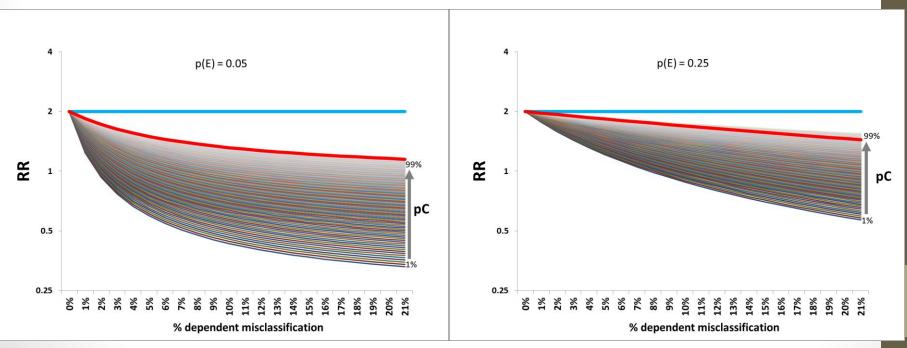
3. Create observed (misclassified) data

/* DEPENDENT MISCLASSIFICATION of EXPOSURE and COVARIATE ----


U = observed (misclassified) exposure

Z = observed (misclassified) covariate

if E=1 and C=1 then do; if 1-ab It X le 1 then do; U=0; Z=1; end: else if 1-(ab+ac) It X le 1-ab then do; U=1; Z=0; end; else if 1-(ab+ac+ad) lt X le 1-(ab+ac) then do; U=0; Z=0; end; else do; U=1; Z=1; end; Repeat for all combinations of E,C end;


*/

- 4. Calculate observed crude and adjusted risk ratios
- 5. Plot the findings

pr(C+)=varying

Truth (blue), Crude misclassified (red) and Adjusted RR (grey) for varying % dependent misclassification of E and C and varying prevalence of C

Simulation of Dependent Misclassification of Exposure and Covariate – a closer look

Simulation of Dependent EC misclassification

Input parameters in light blue, results in red			
	Pr	+	-
prC+	0.05	0.05	0.95
prE+ C-	0.1	0.1	0.9
RR(CE)	1.5		
prE+ C+		0.15	0.85
prD+ E-C-	0.1	0.1	0.9
RR(CD)	4		
prD+ E-C+		0.4	0.6
RR(ED)	2		
prD+ E+C-		0.2	0.8
prD+ E+C+		0.8	0.2
N	250000		

Misclassification		0.03	
A->B	0	B->A	0.03
A->C	0	B->C	0
A->D	0.03	B->D	0.03
А	0.97	В	0.94
C->A	0.03	D->A	0.03
C->B	0	D->B	0
C->D	0.03	D->C	0
С	0.94	D	0.97
А	В	С	D
E+C+	E-C+	E+C-	E-C-

Simulation of Dependent Misclassification of Exposure and Covariate – a closer look

True data

	C+	
	E+	E-
D+	1500	4250
D-	375	6375
Total	1875	10625
Risk	0.80	0.40
RR	2.00	

C+

Misclassified data

	Z+	
	U+	U-
D+	2366	3995
D-	6896	5993
Total	9263	9988
Risk	0.26	0.40
RR	0.64	
Risk unchanged?	FALSE	TRUE

New relation between E (U) and C (Z)

	Z+	Z-
U+	9263	22325
U-	9988	208425
Total	19250	230750
Risk	0.48	0.10
RR	4.97	+

	C-		
	E+	E-	
D+	4750	21375	
D-	19000	192375	
Total	23750	213750	
Risk	0.20	0.100	
RR	2.00		

C-

Z-

	U+	U-
D+	4465	21049
D-	17860	187376
Total	22325	208425
Risk	0.20	0.10099
RR	1.98	
	TRUE	FALSE

New relation between C (Z) and D

	Z+	Z -
D+	6361	25514
D-	12889	205236
Total	19250	230750
Risk	0.33	0.11
RR	2.99	+

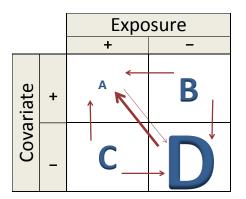
	TOLAI		
	E+	E-	
D+	6250	25625	
D-	19375	198750	
Total	25625	224375	
Risk	0.24	0.11	
True cRR	2.14		
True SMR	2.00	RRc=	

D+

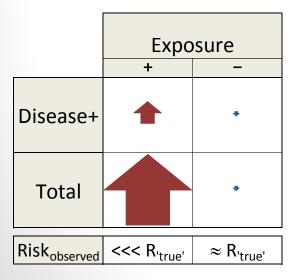
D-

Total

Total U+ U-25044 6831 24756 193369 Total 31588 218413 Risk 0.22 0.11 **Misc RR** 1.89 RRc= Misc SMR 1.15

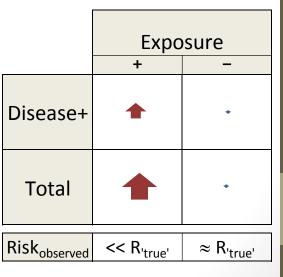

New relation between E (U) and D

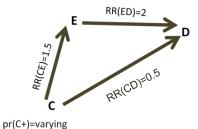
	U+	U-
D+	6831	25044
D-	24756	193369
Total	31588	218413
Risk	0.22	0.11
RR	1.89	+


1.1

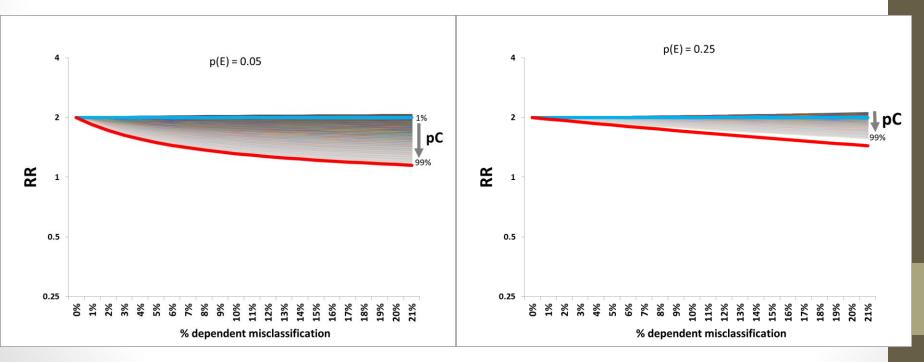
1.6

Simulation of Dependent Misclassification of Exposure and Covariate – a closer look


C+ Strata

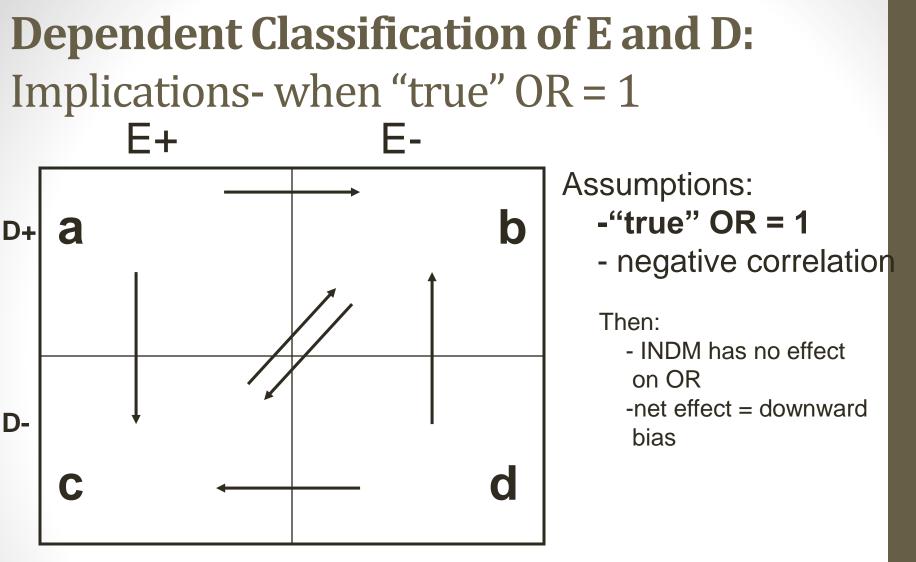


	Exposure + –	
Disease+	*	•
Total	*	*
Risk _{observed}	$\approx R_{'true'}$	$\approx R_{'true'}$


C-Strata

Truth (blue), Crude misclassified (red) and Adjusted RR (grey) for varying % dependent misclassification of E and C and varying prevalence of C

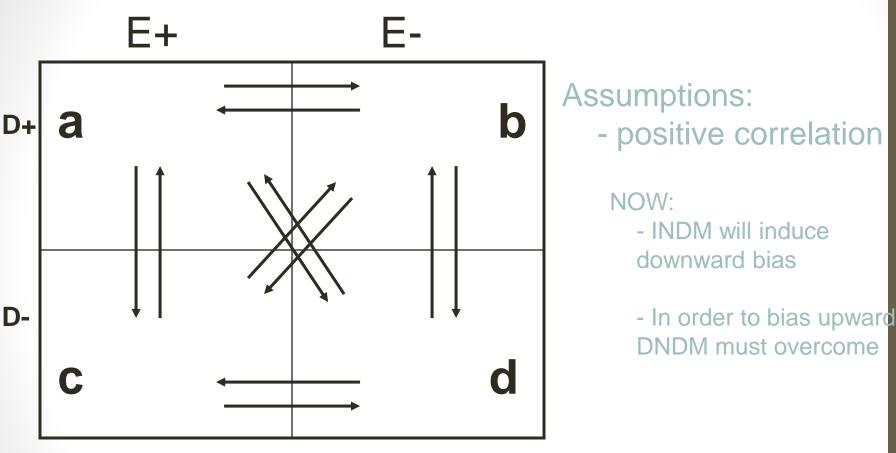
Findings: Dependent Misclassification of Exposure and Covariate


- Identify EMM when there is truly none
- Degree of bias and discrepancy between observed crude and observed adjusted RRs dependent upon pE, pC, RR_CD, RR_ED (and RR_CE), and % dependent misclassification
- By understanding the mechanism acting at the individual level, investigators can assess the likelihood of correlated errors for the variables under study and possible direction of bias

Acknowledgements

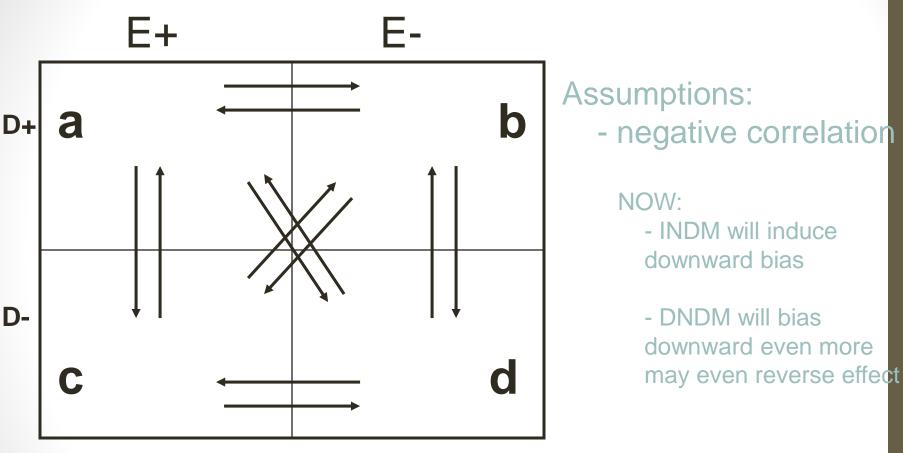
- Alana Brennan
- Matthew Fox
- Daniel Brooks
- My cohort of SimPLE -tons

Dependent Misclassification of Exposure and Outcome


LOGICAL EXTENSIONS OF CURRENT LITERATURE

Rearrangement resulting from error in classification of E and O

Magnitude of bias depends on Pe, Pd and Pr(DNDM)


Implications – What if "true" OR ≠ 1 ?

Rearrangement resulting from error in classification of E and O

Direction and magnitude of bias depends on Pe, Pd, Pr(DNDM) and "true" OR

Implications – What if "true" OR ≠ 1 ?

Rearrangement resulting from error in classification of E and O

Magnitude of bias depends on Pe, Pd, Pr(DNDM) and "true" OR