Simulation Methods in Epidemiologic Research and Learning

Matthew Fox Department of Epidemiology Center for Global Health and Development Boston University, USA

Random Error and 95% Cls

- If you ask most people, a 95% confidence interval from 1.1 to 2.3 means:
 - There is a 95% chance that the true value is between 1.1. and 2.3
 - This is not correct
- If statistical model is correct and no bias, a confidence interval derived from a valid test statistic will, over unlimited repetitions of the study, contain the true parameter with a frequency no less than its confidence level (e.g. 95%)
 - Simple simulation helps make the distinction


```
data master;
    do j = 1 to 1000;
        seed1=-1;
        x= rannor(seed1);
        height = 65+5*x;
        output;
    end;
    drop j seed1;
```

run;

Simulate the height of 1000 people with a mean of 65 and std of 5

11/3/2014

```
Dproc means data=master n mean std min max; var height;
     title "True population mean height";
 run;
                                       From the initial 1000, simulate 1000 datasets
 * REPEATED SAMPLING
                                       each drawn from the original of size 20 and for
∃ %macro rep();
     %do j = 1 %to 1000;
                                       each calculate a mean and 95% CI
         data onerep;
            retain seed1;
         * initialize the seed variable:
            if seed1 eq . then seed1 = -1;
         * loop until designated number of controls are found;
                do j = 1 to 20;
                * choose a random person in the database;
                    lookat = round(1000*ranuni(seed1),1)+1;
                * hold that record for the new dataset;
                    set master point=lookat;
                    * output the record to the new dataset if they are eligible;
                    output;
                end:
            drop j seed1;
            stop;
         run;
         proc means data=onerep mean lclm uclm noprint;
            var height; output out=outset lclm=lclm uclm=uclm;
         run;
         data outset; set outset;
            if lclm le 65 le uclm then included=1; else included=0;
            attrib included label="Did the 95% CI include the true value?" format=vn.;
         run;
         proc append base=newset data=outset force; run;
```

%end;

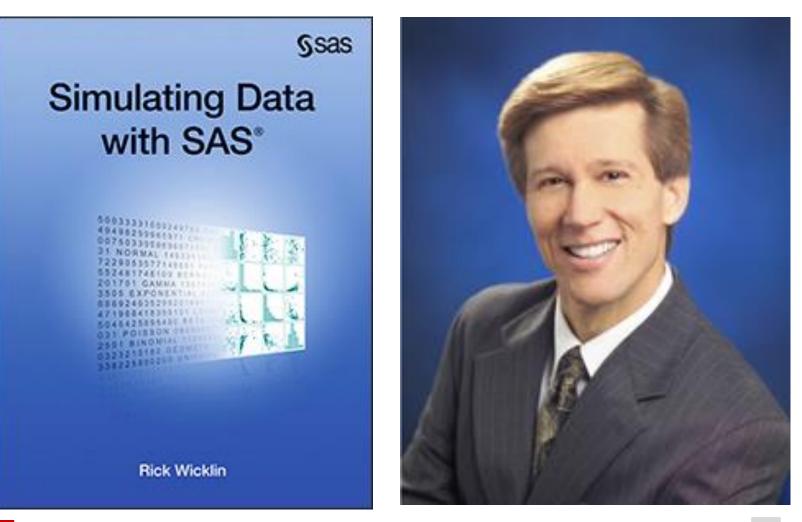
How Often Did CI Contain the Truth?

11/3/2014

	N	Mean		Std Dev	Minimum	Max i mum
Full sample	1000	65.3225048	4.	9252091	50.7579163	86.5469094
-		Did the	e 9577 CI	include	the true value	e?
	included	Freque	тсу	Percent	Cumulative Frequency	Cumulative Percent
	No Yes	! 94	53 47	5.30 94.70	53 1000	5.30 100.00
	100				SORRY,	
					CAN'T TRUST	T
	75 -	H			Y	20
		00			÷	
	50 •					
				3		
	25 -		00			
DII						
BO			k			
	80 M.S.	A	В	c	D	E

Outline

- How SimPLE started
- What we've done
- How you can do it
- Some examples
- Why it is important



DISCLAIMER:

I am not an expert in data simulations ... and this is the point!

A Useful SAS Book

11/3/2014

Motivation

- In my doctoral program I was always wanting a "confounded" dataset when TAing or getting ready for exams, yet at first I didn't know how to create one
 - Found out that in order to simulate it, you have to understand it well enough
 - Started to realize what I didn't know
 - Started to realize I could figure out things myself
- I had a colleague who said that he took a class in which for every concept they learned, they had to simulate a dataset that illustrated that problem

Epi Doctoral Qualifier Question

Below is a shell table for a dataset on the relationship between an exposure E and an outcome D stratified by a covariate C. Assume that we could know each person in the study's counterfactual susceptibility type (Type 1-4)*. Create a dataset with the following properties and fill in the table below:

- 1. The crude E-D relationship is confounded by C (by statistical criteria)
- 2. The C stratum-specific estimates of the E-D relationship are unconfounded (by statistical criteria)
- 3. P1 is not equal to Q1*
- There is no effect measure modification by C of the ED relationship on the difference scale but there is effect measure modification on the relative scale

So Was the Birth of SimPLE

- <u>SIM</u>ulating Problems for <u>Learning Epidemiology</u>
- Goals:
 - Bring together doctoral students from epidemiology and environmental health to learn
 - Everyone contributes
 - We are all beginners
 - We all choose a topic to try to understand better
- Took us a few sessions to cover some very simple concepts and everyone was off and running
 - Message: basic simulation for learning is not hard to do!

What Have We Covered

- Simulating datasets
- Simulating datasets with particular structures
 - Confounding, collider bias, effect measure modification
- Simulating dataset from the main dataset with bias
 - Selection bias, measurement error
- Understanding M bias
- Quantitative bias analysis
- Dependent error
- Bootstrapping

What Do I Consider a Simulation?

 Often we think of big scary, hairy simulations with lots of parameters to vary, complex error structures, lots of complex formulas and always done by a biostatistician

I consider everything from

- Demonstration of a concept
- Creation of a static toy dataset with no randomness
- Creation of a dataset based on probabilities
- Varying parameters
- Simulating error, and error structures
- Big hairy simulations with lots of variation

Simple Simulations

Simulate an Exact Dataset

- data summary;
 - input exp out count;
 - cards;
 - 1 1 25
 - 1075
 - 0 1 50
 - 0 0 50
 - •;
- run;
- proc freq data=summary;
 - tables exp*dis/nocol nopercent;
 - weight count;
- run;

Table of exp by dis

exp dis

Frequency Row Pct Total 0 0 50 50 100 50.00 50.00 1 75 25 100 75.00 25.00 Total 125 200 75

द्ध		SAS - [VIEWT	ABLE: W	/ork.Firs	st]		-		x
File Edit View	Tools	Data S	olutions	Window	v Help				- ť	F X
 			~	🗋 🖻	•	à	N 🖻	V K	$\sim \times$.	ļª ↓
Explorer ×		ex		out		c	count			^
Contents of 'Work'	1	_	1		1			25		
	2	-	1		0			75		
	3	-	0		1			50		
Conf	4		0		0			50		
First										
Second										ł
	<								2	× .
Third										
Re Q Expl	🖪 <mark>O</mark> u	itput - (Ē l	.og - (Ur	n 诺	Sims	for t	🖳 VI	EWTA	
C:\Users\mfox										

Simulate an Exact Individual Level Dataset

- Create the 2x2 table
- data individual;
 - do j = 1 to 25;
 - exp = 1; dis = 1; output;
 - end;
 - do j = 1 to 75;
 - exp = 1; dis = 0; output;
 - end;
 - do j = 1 to 50;
 - exp = 0; dis = 1; output;
 - end;
 - do j = 1 to 50;
 - exp = 0; dis = 0; output;
 - end;
- run;

	E+	E-
D+	25	50
D-	75	50
Total	100	100

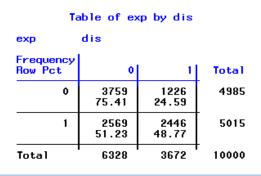
द्ध			5 - [VI	IEWTABLE	E: Wo	ork.Se	econd]		-			×
🖭 File Edit	View	Tools	Data	Solutions									5 3
~				×	D I	2	- 8	۵		ÊÐ	1	кЭ	X
Explorer	x			Ехр	dis								^
ontents of 'Work'	-11	20		1		1							
	- III	21		1		1							
		22		1		1							
Conf		23	_	1		1							
Cont		24	_	1		1							
		25	_	1		1							
		26	_	1		0							
		27	_	1		0							
First		28	_	1		0							
		29	_	1		0							
		30	_	1		0							
		31	_	1		0							
Second		32	_	1		0							
Second		33	_	1		0							
		34	_	1		0)						
		35	_	1		0							
		36		1		0							
Third		37		1		0)						
		38		1		0)						
		39		1		0							
		40		1		0							
		41		1		0							
		42	_	1		0							
		43	_	1		0							
		44		1		0							V
		<										2	ŀ
				1		1			1				
🖬 Re 🔍 Exp	sl	ΒΟι	Itput	🖺 Lo	g - (l	J	🐮 Sin	ns fo	or	 -	VIE	NT.	••
C:\Users\mfo	x												

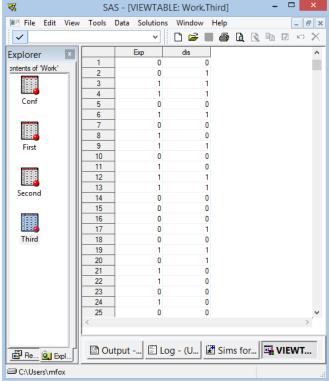
Random Number Generators

- Often want to draw randomly from a distribution rather than create exact outputs
- SAS has lots of random number generators
 - RAND('BERNOULLI', probability);
 - RANBIN(seed, # trials, probability);
 - RANUNI(seed);
 - RANTRI(seed,mode)
 - RANNOR(seed,x);
 - and more... see SAS documentation

Simulate a Simple **Dataset Probabilistically**

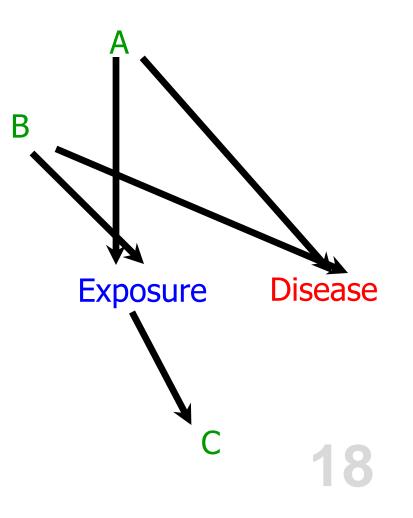
- Pr(E+) is 50%
- Pr(D+) is 25% if E-
- Pr(D+) is 50% if E+
- data prob;
 - do j = 1 to 10000;
 - exp = rand('bernoulli',0.5);
 - if exp = 0 then dis = rand('bernoulli',0.25);
 - else if exp = 1 then dis = rand ('bernoulli',0.5);
 - output;
 - end:
- run:




	The FREQ Procedure							
Frequency	Percent	Cumulative Frequency	Cumulative Percent					
4985 5015	49.85 50.15	4985 10000	49.85 100.00					

exp

Û


dis	Frequency	Percent	Cumulative Frequency	Cumulative Percent
0	6328	63.28	6328	63.28
1	3672	36.72	10000	100.00

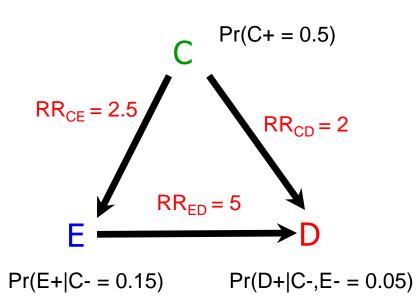
DAGs to Simulate Data

- There are other ways, for me this is the simplest
- Can simulate from a regression model
- (See book for details)
- Can build complex error structures

Confounding

N=1000 per stratum C should be associated with E and D

	Crude			C-			C+			
	E+	E-		E+	E-		E+	E-		
D+	160	170	D+	80	160	D+	80	10		
D-	840	830	D-	120	640	D-	720	190		
Total	1000	1000	Total	200	800	Total	800	200		
Risk	0.16	0.17	Risk	0.4	0.2	Risk	0.1	0.05		
RR	0.94		RR	2		RR	2			
$RR_{CD E-} = 4 = (0.2/0.05)$										
BU $RR_{CE} = 4 = [(800/1000)/(200/1000)]$ 2										

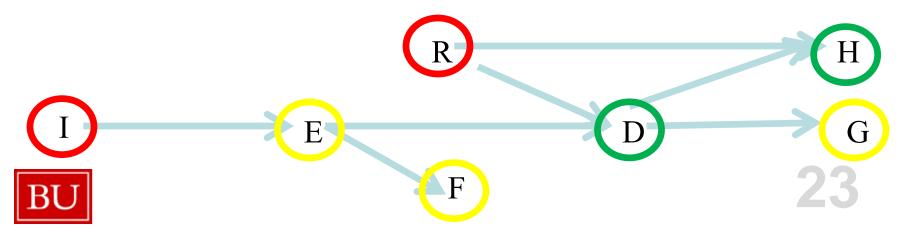

Simulating DAGs: Confounding

Define the baseline risks

- What % of people have C+?
- What % of people C- are E+
- What % of people C- and E- are D+
- Define effects (relative vs absolute)
 - What is the RR/RD for C on E?
 - What is the RR/RD for C on D?
 - What is the RR/RD for E on D?

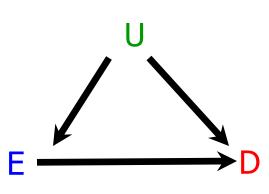
Define interactions

- Do E and C interact to cause D?
- If so, on what scale?

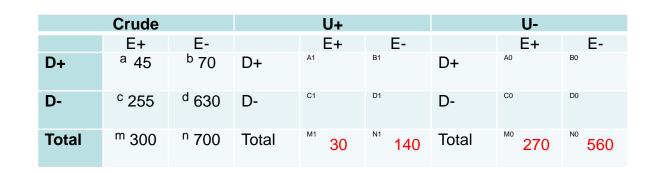

21

11/3/2014

	data	a confi			8	SAS - IVI	EWTABLE: Work.Cor	nf]		-		x
	uald		Ta	able of o	exp by dis		-10	elp			- é	F X
	12.	dı	ехр	dis				3	🛕 🖻		ю	×
			-				_	1	uia	0		
			Frequency Row Pct		1	Total		0		1		
			NOW FCC	+	-	IUtal		0		0		
				1068	1504	2572		1		1		
			+	41.52	58.48	2312		1		0		
				41.52	30.40			0		0		
			_	511	6917	7428		0		1		
			_	6.88	93.12	1420		0		0		
				0.00	30.12			0		0		
			Total	1579	8421	10000		0		0		
			10001	1010	0121			0		0		
								1		1		
			Statistic	es for Ta	able of exp	hu dis		0		0		
			ocaciseit	3 101 1		by dis		1		0		
		Fet	imates of t	the Bela	tive Risk (Bow1/Bow2)		1		0		
		Lou	The cos of t	the neru	cive misk (now i/ now L /		0		0		
		Type of Study			Jalue	95% Confide	nce Limits	0		0		
		Type of orday			Variation	John Committee		1		0		
		Case-Control (Odds Batio) 9	. 6121	8.5315	10.8297	1		1		
		Cohort (Coll R		-	.0360	5.4867	6.6403	0		0		
				_						0		
		Est	imates of th	e Common	Relative Ris	sk (Row1/Row2)	l			0		Υ.
	run;	T	M			058.0-0:					>	
	ı arı,	Type of Study	Method		Value	95% LONT I	dence Limits					_
		Case-Control	Mantel-Ha	ensze l	8.2128	7.2595	9.2913	n	s for	🖳 VIE	WT	
		(Odds Ratio)	Logit	0113201	7.9946	7.0651	9.0463					
D	тт		209.0				0.0100					
ΕВ	U	Cohort	Mantel-Ha	enszel	5.0930	4.6082	5.6289					
		(Coll Risk)	Logit		5.0643	4.5876	5.5906					


Simulating DAGs

- Find the independent nodes and simulate
 - Specify probability
- Simulate nodes dependent on one arrow
 - Specify probability in all levels of the arrows the leads into the node
- Simulate nodes dependent on only two arrows, etc.
 - Specify probability in all levels of arrows that lead into the node
- Pay attention to scale, additive or multiplicative
- Pay attention to interaction (additive or multiplicative)


Unmeasured Confounders

- Suppose I have data on E and D and want to simulate U?
- Now the E and D variables exist, can't simulate E and D dependent on U and C
- Instead I need to simulate U based on the probability of being in any of the 8 missing cells in the table

• $RR_{UD} = 2.5$, Pr(U+|E+) = 10% Pr(U+|E-) = 20%

BU

25

Unmeasured Confounders

•
$$\operatorname{RR}_{CD} = 2.5 \text{ and } A_1 = \frac{RR_{CD}M_1a}{RR_{CD}M_1 + m - M_1} \quad A_1 = \frac{2.5*30*45}{2.5*30+300-30}$$

 $B_1 = \frac{RR_{CD}N_1b}{RR_{CD}N_1 + n - N_1} \quad B_1 = \frac{2.5*140*70}{2.5*140+700-140}$

• So
$$A_1 = 9.8$$
 and $B_1 = 26.9$

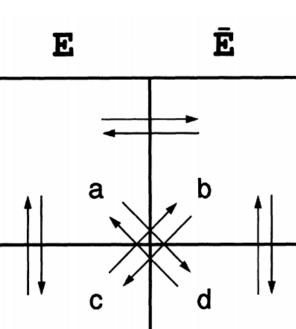
And we can now fill in the rest of the table

	Crude			U+			U-	
	E+	E-		E+	E-		E+	E-
D+	^a 45	^b 70	D+	A1	B1	D+	A0	B0
				9.8	26.9		35.2	43.1
D-	^c 255	^d 630	D-	^{c1} 20.2	^{D1} 113.1	D-	^{co} 234.8	[™] 526.9
Total	^m 300	ⁿ 700	Total	^{M1} 30	^{N1} 140	Total	^{M0} 270	^{N0} 560

Unmeasured Confounders

- So now for any person, if I know their E and D I can tell you the probability of having U:
 - Pr(U+|E+,D+) = 9.8/45, Pr(U+|E+,D-) = 20.2/255
 - Pr(U+|E-,D+) = 26.9/70, Pr(U+|E-,D-) = 113.1/630
- Code:
 - if E=1 and D=1 then U = rand('bernoulli', 9.8/45);
 - else if E=1 and D=0 then U = rand('bernoulli', 20.2/255);
 - else if E=0 and D=1 then U = rand('bernoulli', 26.9/70);
 - else if E=0 and D=0 then U = rand('bernoulli', 113.1/630);

	Crude			U+				
	E+	E-		<u> </u>	E-		E+	E-
D+	^a 45	^b 70	D+	A1	B1	D+	A0	B0
				9.8	26.9		35.2	43.1
D-	^c 255	^d 630	D-	^{c1} 20.2	^{D1} 113.1	D-	^{co} 234.8	[™] 526.9
Total	^m 300	ⁿ 700	Total	^{M1} 30	^{N1} 140	Total	^{M0} 270	[№] 560


Three Posters Here at SER

- 100-S Implications of Nondifferential Dependent Misclassification of Covariate and Exposure
 - Kelly Getz and Alana Brennan
 - TUESDAY, JUNE 24, 2014 7-8:30 PM
- 112-S Understating the Relationship between Directed Acyclic Graphs (DAGs) and Data through Simulation Studies
 - Julia Rohr
 - TUESDAY, JUNE 24, 2014
- 412-S When Does Adjustment for Predictors of Exposure Misclassification Increase Bias? A Simulation Study
 - Samantha Parker and Mahsa Yazdy
 - WEDNESDAY, JUNE 25 5:00 6:30 pm

Example: Dependent Error

- I had a student whom I asked to simulate dependent error to see when it mattered most
- A colleague had a student who wrote a paper on the same idea (Kelly Getz)
- We brought them together
- SimPLE was born

D

Đ

11/3/2014

FIGURE 1. Rearrangement resulting from error in classification of exposure (E, \overline{E}) and outcome (D, \overline{D}) .

