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mm Central Dogma of Molecular Biology

O e~ = Replication (DNA -> DNA)
LTRTN. 4

= Transcription (DNA -> RNA)

» Transcription

RNA

Translation . o
l ANA—proteln = Translation (RNA-> Protein)
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== DNA Inside the Cell 1

At the simplest level, chromatin
is a double-stranded helical

structure of DNA.

DNA double helix

“ One human cell ~¥2 meters DNA (6.6 ft)
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Each nuclecsome consists of
eight histone proteins around
which the DNA wraps 1.65 times,

Heterochromatin

to form nucleosomes.

DNA is complexed with histones

~ Nucleosome core of

6

... that forms loops averaging
300 nm in length.

300 nm

A\

Euchromatin

]

250-nm-wide fiber

o

7

The 300-nm fibers are
compressed and folded to
produce a 250-nm-wide fiber.

\",‘.‘ eight histone molecules 3 A chromab consists
“~ & H1 histone of a nucleosome plus the
e H1 histone.

Chromatosome

5

The nucleosomes
fold up to produce
a 30-nm fiber...

30 nm

x
8 1400 nm
Tight coiling of the 250-nm
fiber produces the chromatid
of a chromosome,
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== Common Epigenetic Modifications

NH, SAM-CH; SAM NH,

= DNA Methylation Aﬁ kT/ : )\)j%

DNMT
Cytosine 5-Methylcytosine

= Histone Modifications

DNA accessible, gene active

= Non-coding RNAs g & O § o -

snoRNA circRNA IncRNA Endo-siRNA miRNA
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Barker’s hypothesis
Fetal programming of adult disease
Low birth weight/size -> disease (CHD)

Relative risk of coronary heart disease among
13,249 men born in Hertfordshire and Sheffield
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Martyn, CN. et al., The Lancet 348.9037 (1996)

Epigenetics as a potential mechanism/biomarker
Interface between genome and the environment

Environment Special:
The oceans—why 70%
of our planet is in danger

How the
first nine

mh%nths

S

the prgst_
of your life

The new science
of fetal origins
BY ANNIE MURPHY PAUL

The Facebook Movie:
The secret history of
social networking
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‘l DNA methylation

Methyl marks added to certai
DNA bases repress gene activi ty

Histone modification
A combination of different

alter the activity of the DNA
wrapped around them.
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molecules can attach to the “tails’
of proteins called histones. These

Epigenetics
Changes in gene expression that:

Do not depend on the DNA sequence

Can be stable
Through cell division (mitotically stable)
Transgenerational inheritance
(limited evidence in humans)

May persist even in the absence of the
conditions that established them
(Biological memory-> Biosensor)



mm Epigenetics - Fetal Programming in Utero

Mother: FO

Baby: F1

Baby’s primordial
germ cells (PGC):

______________ F2 F2
2
egg,
5 /

S e R

I/ mother’s egg ' /
gonad?I sex germ cell fartiization blastocyst | germ cell gonadal sex
determination  development implantation migration determination

Critical window

Adapted from F. Perera & J. Herbstman Reproductive Toxicology 31.3 (2011): 363-373
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DNAmM as a molecular switch O Unmethylated

O Methylated

NH, NH,
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H Gene Expression
Gene —

* Gene Expression Repressed
Gene —

CpG Island

Genomic regions associated with tissue differentiation and oncogenesis

8 170 A O O

T SUTR I JUTR
CpGisland Gene body
CpG dense, usually
CpG island shores
| Variable tissue- and disease- _| T Unmethylated CpG

specific methylation, stronger
regulators of expression CpG: Cytosine-phosphate-Guanine dinucleotide




mm DNAmM: tissue specificity

" Epigenetics contributes to tissue | &
differentiation

" Epigenetic marks are cell-type and tissue 1
specific

= Each cell type has a unique epigenetic
signature

= A challenge and opportunity for
epidemiological studies

w Codoc il Tbdecel Red  Smooh Foncreatc Tyod Lung con Spom g
oolls  kdwey  cels  (ngu) oo
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Epigenome: biomarkers of exposure and response to the early life environment

Paternal exposure

Maternal exposure

Internal
dose

Epigenome

\ 4

Newborn health

A 4

Lifecourse epidemiology
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(Window into the past)

ON

THE ORIGIN OF SPECIES
BY MEANS OF NATURAL SELECTION,

OR THE

PRESERVATION OF FAVOURED RACES IN THE STRUGGLE
- FOR LIFE.

By CHARLES DARWIN, M.A.,

FELLOW OF THE ROYAL, GEOLOGICAL, LINNAIAN, ETC,, SOCIETIES

AUTHOR OF  JOURNAL OF RESEARCHES DURING 1. M, 8, BEAGLE'S VOYAGE
ROUND TIE WORLD.'

LONDON:
JOHN MURRAY, ALBEMARLE STREET.
1859.

The right of Translation is reserved.

( )

Snapshot of the future

BY THE AUTHOR OF THE #1 NEW YORK:TIMES BESTSELLER
s THE FUTURE OF THE *MIND

BB HE . HUMANITY

TERRAFORMING MARS, INTERSTELLAR TRAVEL,

! IMMORTALITY AND OUR DESTINY BEYOND EARTH -

allen lane
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DNA Methylation (DNAm): A covalent epigenetic modification of the nucleotide cytosine,
which is heritable (cell-division)

CpG site: Cytosine followed by a Guanine nucleotide

Epigenome: The epigenetic information in a cell, comprising DNA methylation, post-
translational modifications of histones and higher-order chromatin structure

EWAS: Epigenome-Wide Association Study. Usually referring to genome-wide DNAmM

Genomic imprinting: Parent-of-origin—specific epigenetic marks generally associated with
comparative silencing of the allele transmitted to the offspring

Feinberg, Andrew P. NEJM 378.14 (2018): 1323-1334
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Exposure to BPA in utero and DNAm of the AYY |locus

-

B Control Diet
[C] BPA Diet
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Persistent epigenetic differences associated with
prenatal exposure to famine in humans

Bastiaan T. Heijmans®'2, ElImar W. Tobi®2, Aryeh D. Stein®, Hein Putter®, Gerard J. Blauw®, Ezra S. Susser®",
P. Eline Slagboom?, and L. H. Lumey®-
Departments of *Molecular Epidemiology, “Medical Statistics, and 9Gerontology and Geriatrics, Leiden University Medical Center, Leiden, The Netherlands;

bHubert Department of Global Health, Rollins School of Public Health, Emory University Atlanta, GA 203222; ®Department of Epidemiclogy, Mailman School
of Public Health, Columbia University, New York, NY 10032; and fMew York State Psychiatric Institute, New York, NY 10032

SNAS :

Edited by Charles R. Cantor, Sequenom Inc., 5an Diego, CA, and approved September 17, 2008 (received for review July 7, 2008}

IGF2 (insulin-like growth factor Il):
Maternally imprinted
Similar structure to insulin & promotes growth during gestation
Highly active during fetal development

Dutch Hunger Winter (German-occupied Netherlands):
Severe caloric restriction during gestation
Exposed individuals compared to same-sex siblings (unexposed)

Heijmans, BT, et al. PNAS 105.44 (2008): 17046-17049
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mm Candidate Gene Approach

Prenatal famine exposure associated with lower DNAmM of IGF2

Early gestation Late in gestation
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Fig. 1. Difference in /IGF2 DMR methylation between individuals prenatally exposed to famine and their same-sex sibling. (A) Periconceptional exposure:

Difference in methylation according to the mother’s last menstrual period (a common estimate of conception) before conception of the famine-exposed
individual. (B) Exposure late in gestation: Difference in methylation according to the date of birth of the famine-exposed individual. To describe the difference
in methylation according to estimated conception and birth dates, a lowess curve (red or blue) is drawn. The average distributed rations (in kcal/day) between
December 1944 and June 1945 are depicted in green.

Heijmans, BT, et al. PNAS 105.44 (2008): 17046-17049
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mm DNAmM: Human Studies

Look at candidate genes
~20,000 genes x 100 - 1,000s of CpGs

High density microarrays (agnostic approach)
Covers 99% of the RefSeq. genes

Screens >850,000 CpG sites (EPIC) / 450K CpGs (450K)
Single nucleotide resolution

Hypothesis-free Epigenome-Wide Association studies (EWAS)
High dimensional genomic data
Parameters >> N

Andres Cardenas
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mm Costs/Sample size
Methylation Technology Options

$5’000 Whole
Genome

o
3 30-50M CpGs

3 Whole genome
©$500 Any organism

% $1800 per sample
o

@

=

$50

Pyrosequen Cin ge——

10s 500K ™ 2M 5SM 20M S0M

# of CpG sites Courtesy of Britt Flaherty, PhD (lllumina, 2017)

Andres Cardenas 20



mm Study Design Considerations

)

Periconception period Birth Processing Analyses
Questioners Quesjuone.rs Storage Hypothesis testing
Bio-specimens DNA isolation (placenta/CB) Analyses EWAS
—4
N

Andres Cardenas 21



Bioconductor y ¥ o

OPEN SOURCE SOFTWARE FOR BIOINFORMATICS

Open source, open development software project
Based primarily on the R programming language
Widespread access to a broad range of omics tools

Complete workflows for epigenomic data

Enables high-quality documentation and reproducible research

https://www.bioconductor.org/

22
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= AN3

Low intensity probes

Qualit\( control * Cross-reactive probes
* Exclude low quality samples SNP probes (MAF>1%)
* Exclude problematic probes Non CpG probes

Allosomal probes

lysis Pipeline [

\ 4

Normalization
e Background correction

Dye-bias adjustment
Probe-type bias

\ 4

Batch adjustment
ComBat: sample plate/chip

[

y

[ Cell-type adjustment

Andres Cardenas
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mw Quality Control of Samples

= Sex-prediction

Andres Cardenas

Y chr, median total intensity (log2)
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X chr, median total intensity (log2)

13.5
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== Normalization

= Removing unwanted variation in microarray data (technical variation)
= Background correction (between-array variation)
= Dye-bias adjustment
= Batch effects

Raw Data Fun-Norm Fun-Norm + ComBat

00 02 04 06 08 10 00 02 04 06 08 1.0 00 02 04 06 08 1.0
Beta-values Beta-values Beta-values

Andres Cardenas
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Raw Beta-values PCA

Fun-Norm Beta-values PCA Fun-Norm + ComBat Beta-values PCA

Plate
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PC1(37.8%) PC1(24.1%) PC1(19.8%)
Plate Associations with Top three PCs
Raw PCA Fun-Norm PCA Fun-Norm + ComBat Adjusted
Principal Component Variance explained P-value Variance explained P-value Variance explained  P-value
PC,; 37.8% <0.001 24.1% <0.001 19.8% 0.99
PC, 16.7% <0.001 9.4% 0.001 8.7% 0.95
PC, 6.2% <0.001 6% <0.001 4.5% 0.99
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Batch effects can completely ruin experiments!
How are batch effects generated?

Run One

Run Two

Chip 1 Chip 2 Chip 3 Chip 4 Hareer, KN et al. Cancer Eg/demio/ Biomarkers Prev. (2013) 22.6 : 1052-1060.

27



A) B)

mm Batch effects: a cautionary tale  we (o L we. e e

. High Arsenic

[ chip3 semmim — ———

B chipa

Run One

Run One

Q

. Low Arsenic
. High Arsenic

i o
Chip1 E
Run Two =
o
Run One Run Two
Significant CpGs (Non-Randomized) @ (Randomized)
No chip adjustment 1,203 0
Chip adjustment 24,184 187
Chip 1 Chip 2 Chip 3 Chip 4 Overlap 25

Harper, KN et al. Cancer Epidemiol Biomarkers Prev. (2013) 22.6 : 1052-1060.
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Before quantile normalisation B r<10°

H B EH N I e 10%0<Pe10°

10°<P<0.01

Batch

DNAinput
BSC2

BSC1

Age
Histology —
Grade -
Stage —

CaseControl -~ - -
1 T T 1 | T 1 T T | T T | | |

1 2 3 4 5 & 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Teschendorff et al. PLoS One (2009); e8274.
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After adjustment for BSC, DNA input and Batch effects B P<101°

. 1019«<P<105

10°<P<0.01

Batch

DNAinput —
BSC2 -
BSC1

_

Histology —
Grade —
Stage —

I | | I | | I | | I | | I | | I

1 2 3 4 5 B 7 8 9 10 11 12 13 14 15 16 17 18 19 20

If known batch effects can be adjusted
Sample plate is a good surrogate batch variable
Randomization of samples is key! Teschendorff et al. PLoS One (2009); e8274.
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“Backbone” of all DNAmM analyses
Fit adjusted linear model for each CpG (450-850K models)
Estimate coefficients and P-values (decide on significance a priori)

Several methods/models

OLS

Linear robust regression

Limma

t—test o ma*x(yiimwthylﬂ)—'_a

ME - 10g2 (nlax(yf,immﬁmy!U]_Fﬂ.
Model methylation on native B-scale or M-value oM, " Beta. |
_ _ Beta, =—— ;M. =lo ‘
B-values (0-1) P OM 82[1_33% ]

Logit transformation of B-values -> M-values

31



T2 TTTTT

I7¢

T2 TTTTT

I7¢

TCTTTTT

I7¢

Low exposure High exposure

T TTTTY

r7?

o o | |-eo

-0 O e [-e

o | [o |-o

Fitting a statistical model
Assumptions still apply
Confounding
Mediators/colliders etc.

Think about the model carefully

cg01163597

0.04 0.06 0.08 0.10

logz(As in water) pg/L

0

I

anjeA-g uonejAylan

1
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mm Multiple testing burden (omics)
* Experimental design testing many features (CpGs, SNPs, miRNA, etc.)

= Example: [llumina’s EPIC chip (~850K tests)

False

Probabilit . :

H-tests Y Discoveries
Type | error

Expeceo

1 5% 0.05

- Correct 2 10% 0.10
-g Decision
S 3 14% 0.15
= 4 19% 0.20
3 o 5 23% 0.25
< Decision

450K ~100% 22,500

850K ~100% 47,500

Andres Cardenas 33



Bonferroni correction (a/850,000): P<5.8x10-8
Bonferroni correction: increases type Il errors
We can control the FDR at 0.05

Controlling the FDR: g-value ]

Distribution of Null P-values

1.0

0.6

Density

Histogram of null P-values

0.2

[ [ [ I I | o -

0.0 0.2 0.4 0.6 0.8 1.0 | i T ] | 1
0.0 0.2 0.4 0.6 0.8 1.0

P-value

Storey & Tibshirani PNAS 100.16; 440-445 (2003)
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mm Population Stratification

= Spurious association of cases with the blue SNP feature (similar with CpGs)

Case Control

000 Ol

Populatlon

Balding DJ, Nature Reviews Genetics (2006): 7.10 781.

Andres Cardenas 35



Cell-types have a “unique” DNA methylation fingerprint

Methylation B-value

0 1

E.A. Houseman et al. BMC Bioinformatics (2012) 86; 13.1
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mm Population stratification

= Adjustment for blood cell-type composition is possible

* Adjustment reduces confounding and improves genomic inflation

S,: target methylation
data set

Subject 1 ‘

'S, reference

methylation data
A" @

OAOQO

Cell type frequencies Cell type frequencies

- - e
) 0 e
o o~ o
-  — -

>
B e £
~ ~ ~D
- 9 < ~ ” ~ C o g
Uﬂ > . > )
I~ —
S > a > S
Subject 2 L vE®PL - <« ©
>3 P > >
< & < -~
'S reference S a Sa S S
methylation data S * S * S s <
et = E_. €. € S
OAQO EZ ET Y S e
Cell-type specific Target sample
DNA methylation DNA methylation

E.A. Houseman et al. Curr Env Health Rept (2015); 2.2 145-154
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mm Population stratification

= Adjustment for blood cell-type composition is possible

* Adjustment reduces confounding and improves genomic inflation

Cell type frequencies
m —
- | FE—
(Q |
H O 4a O
= |
2
_CL '/, : :_‘_/‘j C')'-'.
c D 5 D S
E < 4 < ® & O & © - 8
= > > >3 N
S < E . & <
g > > 8 2 >
N AR T P < ©
> o > )
,:_) ,f/,/' P )
o~ — t"\ '\\):, I‘:; Q\_\
> * > * > B <
5 5 3 S
“d < & &
B - -5 —~
2o 2o 20 > @
N '-:‘*. (:.\\ .‘\‘:\
O - -
I I . | T Cell-type specific Target sample
0 1 2 3 4 DNA methylation DNA methylation

-log10(uniform quantile)
E.A. Houseman et al. Curr Env Health Rept (2015); 2.2 145-154
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mm Population stratification

* Q-Q plots and lambda (A) values are useful to evaluate population stratification

= A can help detect systematic bias and population stratification

B Methylation Associated with Smoking
* Healthy Q-Q plot AHRR
02g37.1
1x107
) F2RL3 QQ plot - Smoking
~ 1x10% “ )
] 8
z 2
¢ © - pe
g

Lambda =1.08

chromosome e

Shenker et al. Hum. Mol. Genet. (22.5 (2012): 843-851.
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mm Manhattan plots: CpG-by-CpG Analyses

= Help identify more relevant biological signal

= Regional analyses are complementary to single site analyses

L ]
o : Bonferroni
: FDR
e S S
L
(_o p—
o P L]
3 : RN
8) .. o * L/ . ¢ - . ¢
_I . % ™ & % L Y @ - -»
« — N o3 & (Y e L. ¢ :‘ % g & . ‘e
. . ¢ 5. .g %3 » . O.‘ b4
s g e o™ “.o
N p—
D p—
o™ [ap] g w0 [do] M~ [e0] ()] (o] ~— (o] o) <t [Up] w M~ 0 OO O — NN
~ ~— ~ ~ ~ ~ -— ~— — — N NN
Cardenas, A., et al. Diabetes (2018 Epub.)

Chromosome
40
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CpG-by-CpG analyses: are we using the right tools?

What about CpGs that are close to each other (correlated)

Promoter region Gene body O
A A =
- ~~ e 5
?eRR® @ee ot te o+ [
CpG island Lk

Methods are now available to model clusters of CpGs
Bump-hunting (Jaffe, et al. Int J Epidemiol, 2012)
Comb-P (Pedersen, et al. Bioinformatics, 2012)
DMRcate (Peters, et al. Epigenetics Chromatin, 2015)
Aclust (Tamar, et al. Bioinformatics, 2013)
Probe Lasso (Butcher, et al. Methods, 2015)
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= [arget tissue

= Think about the cell-type composition of tissue
* Blood: DNA from leukocytes
“ Cord blood: DNA from leukocytes and nucleated RBCs
* Placenta: trophoblast, endothelial cells, vascular tissue, etc.

= Relevance for the disease/exposure of interest
= Cardiovascular disease = blood might be OK
= Cognition =2 Is blood relevant?

= Aim: discovery of biomarkers or mechanism?
= Accessibility vs. biological relevance

= Top CpG sites might be passengers or drivers of associations
= Causal claims must be critically examined
= Replication ensures generalizability
“ Mendelian randomization methods

Andres Cardenas 42



Cell mixture remains an issue for other commonly used tissues
Placenta
Buccal cells
Nasal cells

Reference free methods for adjustment are available
EWASher (Zou, et al. Nature Methods, 2014)
RefFreeEWAS (Houseman, et al. Bioinformatics, 2014)
ReFACTor (Elior, et al. Nature Methods, 2016)
MeDeCom (Pavlo, et al. Genome Biology, 2017)

Assumes that some factors reflect cell-type distribution (SVA, PCA, etc..)
Improvement of signal to noise ratio

Overcorrection is a risk with reference-free methods

43



SCIENCE ADVANCES | RESEARCH ARTICLE

HUMAN GENETICS Copyright © 2018
The Authors, some
DNA methylation as a mediator of the association rohs e
between prenatal adversity and risk factors for Ameran Aot
metabolic disease in adulthood of Scence. No clam to

original U.S. Government

Elmar W. Tobi,"? Roderick C. Slieker,’ René Luijk," Koen F. Dekkers," Aryeh D. Stein,* m‘z::'aoicsr:ﬁ:f:d
Kate M. Xu,>* Biobank-based Integrative Omics Studies Consortium,* P. Eline Slagboom,’ Commons Attribution
Erik W. van Zwet,® L. H. Lumey,"®! Bastiaan T. Heijmans'™* NonCommercial

License 4.0 (CC BY-NQ).

Y/

\\ DNAm in whole blood
lllumina 450K ~ 450,000 CpGs

Dutch Hunger Winter
Prenatal famine exposure
<900 kcal/day

Serum triglycerides
BMI

Tobi, EW.,, et al. Science Advances 4.1 (2018): eaa04364.
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Mediation on triglycerides levels and BMI

Table 3. Mediation analysis: DNAm and the association between famine exposure and triglycerides.

Proportion
Location Nearest = Methylation EWAS Previous -
CpG (hg19) gene* (sD)* Rank Pore Pramine Pre studies Bmediation mediation mediated {EB ) Poroportion
[95% CI]
€g19693031 chr1:145441552 TXNIP 775 (43) 6 26x10° 48x10° 23x107" (41-45) 2.6 [0.7-4.8] 0.005 28.0 [5.7-100] 0.026

1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111

915020801 chr17:46022809 PNPO 36.1 (3.4) 12 35x10°2 71x10® 60x10®% (30) 23[09-42) 0.001 25 [7.0-100] 0.022
€g06983052 chr1:90288099  LRRC8D 648 (38) 13 42x10° 10x10° 53x10° 26[1.1-45] <0001 280 [8.8-100] 0024
cg07397296 chr21:43655316  ABCGI 269(38) 14 0021 51x10° 19x107 (490 19[06-36] 0.005 205 [46-97.4] 0027

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

€g20496314 chr22:39759864  SYNGR1 40.2 (4.3) 15 0032 39x107 15x107 (45 46) 18[05-35] 0.007 196 [3.6-883] 0026

*Nearest gene within 100 kb. tThe lllumina 450k array [§ value (ranging from 0 to 1) multiplied by 100 for easy interpretation. $This is the estimate and
Cl based on 10K Monte Carlo simulations of the indirect effect or mediation effect, which is often referred to as the "a x b" effect. §The percentage of the
total exposure-phenotype relationship explained by the indirect (mediated) effect as based on 10K Monte Carlo simulations.

Tobi, EW.,, et al. Science Advances 4.1 (2018): eaa04364.
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0.0

DNAm in cord-blood predicts (prenatal) maternal smoking (3-24 CpGs)

ROC Analysis: Training and Test Sets

~0.367 (0.979, 0.803)

* 0367 (0.968,0.581)

AUC: 0964
AUC: 0.898

—&— Training (N=1057)
- @ Test (N=221)

Table 2. Logistic LASSO results for main and additional analyses.

Model Data set q AUC (CI)
a Cotinine-based sustained Training? 24 0.97(0.95, 0.99)
smoking Test? 0.88(0.80, 0.96)
b Self-reported sustained Training? 12 0.93(0.90, 0.96)
smoking Test? 0.82(0.74, 0.97)
¢ Combined sustained Training? 28 0.96 (0.95, 0.98)
smoking? Test? 0.90(0.83, 0.97)
d Naive CpG selection® Training? 3 0.89(0.86, 0.92)
Test? 0.82(0.73,0.91)

1.0

0.8 0.6 04 0.2 0.0

Specificity

Reese, SE., et al. Environmental Health Perspectives 125.4 (2017): 760
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Sensitivity

0.4

o
-

0.8

0.6

0.2

0.0

DNAm of blood in adults predicts (prenatal) maternal smoking

== Prenatal smoking methylation score (newborns) (AUC = 0.69)

== Prenatal smoking methylation score (older children) (AUC = 0.72)

methylation score (AUC = 0.57)
g methyiation score (older chi

=== Own smoking
== Prenats

0.8

15 CpGs predicting prenatal smoking
AUC=0.72 (95% CI: 0.69, 0.76)
Persistence of signature

0.6 0.4 0.2 0.0

Specifici
pecificity Richmond, R. et al. International Journal of Epidemiology (2018) Epub.
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mm Future: Biomarker Development
Nasal Methylome

In direct contact with the environment =
Different tissues give you different information
Nasal Cavity o
Opening of BT

Middle &
Inferior
Turbinates

Sensitivity

Asthma prediction S

r’?w i (5 — E— External N
£A v S A 4 o
= Nares —— LASSO (AUC = 0.89)
| &) —— Elastic Net (AUC = 0.91)
o —— Ridge (AUC = 0.92)
o
2
[ [ I I I [
1.0 0.8 0.6 0.4 0.2 0.0
Specificity

Cardenas, A., et al. (In Preparation)
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DNAm age (Horvath clock)
Highly correlated with chronological age
Accelerated by environmental exposures
Predicts mortality
Multi-tissue predictor

A All Train. err=2.9 cor=0.97, p<1e-200

100

Age
40

DNA methylation age of human tissues

0 20 40 60 80 100 and cell types

Horvath

m.age(training set CpGs)

Horvath, Steve. Genome Biology 14.10 (2013)
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mw Age Acceleration: DNAmM Age > Chronological Age

LBC1921 Horvath Survival Curves

LEC1921 Hannum Survival Curves
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Marioni, Riccardo E., et al. Genome Biology 16.1 (2015): 25 & Zhang, Yan, et al. Nature Communications 8 (2017): 14617
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Epigenetic
Inheritance
Systems

Stochastic
Events

Malleable

Germ-line
Genetic
Variation

Epigenome

Intermediate

Environment

|

Relton C. & Davey-Smith G. International Journal of Epidemiology 41.1 (2012): 5-9

—»| Phenotypes / _s_.

Biomarkers

Primary & Primordial
Prevention

Disease

52



= g o il 7- -~ ~
— - — - - . -~y ~ ~
-/.‘_ R " 2 ~ - N
Epigenetic \ - \ " \
Inheritance T X \ \
Systems \ \ \
. b \
Stochastic
Events !
Intermediate
Epigenome |e=———pi Phenotypes / Disease
Germ-line Biomarkers
Genetic
Variation

Environment

Relton C. & Davey-Smith G. International Journal of Epidemiology 41.1 (2012): 5-9
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Epigenetics as the interface between the genome and the environment

Address hypothesis on fetal origins of adult disease
Develop biomarkers of exposures and outcomes
Powerful tool for birth cohorts & early life events

Study considerations
Big data does not circumvent epidemiological issues
Design matters (case-control/prospective/retrospective)
Collect relevant tissues/samples at appropriate time-points

Analytical issues
Sample size (Parameters>>N)
Randomize samples and ensure balance by trait of interest

Collaborative science

Welcome to the Epigenetic Revolution!
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& COLUMBIA | MAILMAN SCHOOL K@/
of PUBLIC HEALTH

Epigenetics
}oat Camp

Planning and Analyzing DNA Methylation Studies
Columbia University — New York City

e 2-day Boot Camp — Instructors with 40+ years of combined epigenetics experience
from Columbia, Harvard, and Icahn School of Medicine at Mount Sinai

* Learn more & sign up to hear about next course: mailman.columbia.edu/bootcamp

Andres Cardenas


mailman.columbia.edu/bootcamp

= Resources

= Coursera free online class: Epigenetic Control of Gene Expression
= https://www.coursera.org/learn/epigenetics

NIH Roadmap Epigenomics Project gt ROADMAP
= http://www.roadmapepigenomics.orq/ 2 ( ep'genomlcs

PROJECT

= Bioconductor workflow for data analysis
= https://f1000research.com/articles/5-1281/v3

DNA methylation: roles in mammalian development
= https://www.nature.com/articles/nrg3354

= Consortium: Pregnancy And Childhood Epigenetics (PACE)
= https://www.niehs.nih.gov/research/atniehs/labs/epi/pi/genetics/pace/index.cfm

PACE

Pregnancy And Childhood Epigenetics
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Discussion & Questions

DEPARTMENT OF POPULATION MEDICINE

&4 HARVARD Harvard Pilgrim

g MEDICAL SCHOOL Health Care Institute

Contact: cardenas@hsph.harvard.edu

YW @cardenaasca
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