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Motivations

Smoking is extremely common among HIV-
positive Americans: double (~42%) the 
prevalence compared with general US 
population (~21%).

Another 20% of HIV-positive Americans are 
former smokers. 

Mdodo et al. Annals of Internal Medicine 2015



Motivations (2)

Smoking raises risks of miscarriage: Pineles et 
al. meta-analysis reports that smoking during 
pregnancy has a meta-analytic risk ratio of 1.32 
(95% CI: 1.21, 1.44; n = 25 studies).

Pineles, Park, Samet American Journal of Epidemiology 2014



Motivations (3)

Almost no data on smoking and miscarriage 
among HIV-positive women.

Just for example, PubMed.gov (3 May 2017):

“smoking miscarriage”  772 hits

“smoking miscarriage HIV”  5 hits



Study question

What is the causal effect of smoking on risk of 
miscarriage, and does the effect vary between 
HIV-positive and HIV-negative women?

Sidebar: we are explicitly asking a causal question here. 
We are explicit about this only rarely, but it is frequently 
implicit.



Data source: the WIHS

The Women’s Interagency HIV Study is a 
multicenter prospective observational cohort study 
of HIV-positive and sociodemographically matched 
un-infected women enrolled at ten cities 
throughout the United States. WIHS participants 
undergo a twice-yearly medical exam and 
interview; detailed procedures are described 
elsewhere.

Sites scattered across the US; UNC, UAB, and Emory 
are new sites of the WIHS.



Exposure

Cigarette smoking during or immediately prior 
to pregnancy, which we referred to as “current 
cigarette smoking.” 



Outcome

Self-reported stillbirth or miscarriage (pregnancy 
loss before 20 weeks), compared with live birth.



Confounders

Identified from a DAG (not shown; it’s a mess)

Included age, race, employment status, above-
median income, body mass index, depression, and 
recent use of intravenous drugs, marijuana, and 
alcohol.

Variables captured at the same visit as the 
exposure; generally modeled as categorical 
variables or restricted quadratic splines as 
appropriate.



Statistical methods

Log-binomial regression; robust variances b/c 
some women had >1 pregnancy outcome in our 
analysis.



Results (AIDS 2017)



Smokers differed from nonsmokers
These data are for the pregnancies, not people

Characteristic
Current smoker
n=377

Current nonsmoker
n=656

Demographic
Black race 253 (67%) 372 (57%)

Socioeconomic status
Employed 74 (20%) 267 (41%)

Substance use
Since last visit

Alcohol consumption (any) 166 (44%) 173 (26%)
Intravenous drug use 8 (2%) 4 (1%)
Non-intravenous drug use 145 (38%) 78 (12%)
Marijuana use 114 (30%) 70 (11%)

Intravenous drug use at baseline‡ 63 (17%) 34 (5%)

Clinical indicators
HIV-positive 212 (56%) 380 (58%)
Body mass index† 27.4 (23.4, 32.9) 29.2 (25.4, 34.0)
Depression (CESD ≥ 16) 166 (44%) 159 (24%)
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Main results, risk ratios

The risk ratio for current smoking vs. not-current smoking among 
women in the WIHS (controlling for possible confounding by HIV 
status):

Overall 1.55 (95% CL 1.28, 1.89)

The risk ratio for current smoking vs. not-current smoking among 
women in the WIHS by HIV status:

HIV-negative 1.31 (95% CL 0.99, 1.75)
HIV-positive 1.74 (95% CL 1.36, 2.23)

Interaction beta-coefficient is 0.28 (SE 0.18),  p=0.123, suggesting 
interaction. Broadly, results supported by sensitivity analysis.



Conventional discussion (1)

Smoking has a stronger impact on risk of 
miscarriage among HIV-positive women than 
HIV-negative women.

Adjusted risk ratio among HIV-negative women 
is not statistically significant, but is delightfully 
coherent with meta-analytic result (1.32, 95% 
CI: 1.21, 1.44).



Conventional discussion (2)

Strengths: WIHS is well-understood and well-
collected interval-cohort data.

Limitations: can’t interpret as a causal effect 
because of possible uncontrolled confounding 
(non-exchangeability), possible measurement 
error, potential for meaningful treatment 
variation (is all current smoking created equal?), 
etc.



Unconventional discussion

But wait. What are we estimating here?

We were using a log-binomial regression model, 
which (under causal identifiability assumptions) 
estimates a (sample-)average causal effect. 

That is, we made a contrast between two 
counterfactual exposure distributions. Namely, all-
exposed and none-exposed. Think about that for a 
second:



A. The observed population.



B. Sample average causal effect



Wait, what?

So we asked, “if all these women were smokers, 
what would their risk be?” and “if all these women 
were nonsmokers, what would their risk be?”

Neither of these proposed exposure distributions 
are observed: both are counterfactual. 

And worse, neither is realistic. In what world are 
ALL these women smokers? What intervention do 
you propose to get them ALL to quit smoking?



What, then, does this contrast tell us?

Anyone?

In particular, does it have any bearing on policy-
making (that is – on public health per se)?

What should an implementation scientist make 
of this number?



What, then, does this contrast tell us?

An opinion: it has some bearing on public health. It tells us 
that smoking is bad; and that smoking cessation may be 
higher priority among HIV-positive women than among HIV-
negative women for purposes of preventing miscarriage.

I think it mainly tells us something about the effect of smoking 
on a typical woman in this population. This risk ratio is the 
best guess at the individual causal effect.

Though of course it cannot be assumed to actually apply to any 
individual in the cohort – so it might be better viewed as a prior?

So I think of this as an “exposure” effect. One alternative:



Population intervention effects

Name due to Hubbard and van der Laan 2005

Let us contrast the observed exposure 
distribution to a more-realistic counterfactual –
ideally one that corresponds to a realistic 
intervention.

What does that look like?



Where we left off:



C. Population



C. Population attributable fraction



C. Population attributable fraction



C. Population attributable effect



Population attributable effect

The risk under the observed exposure compared to 
the risk under all exposure removed (alternatively, 
under all exposure present).

More realistic (not imagining all women are or 
become smokers), but still flawed: can’t remove all 
smoking. So fails the “more realistic” test.

One possible interpretation: bounding condition for 
the perfect intervention.



D. Generalized intervention effect



Generalized intervention effect

The risk under the observed exposure compared 
to the risk under some exposure removed. 

Special case: all exposure removed (population 
attributable effect).

How much exposure removed? This can be 
answered by invoking a realistic (and ideally, 
empirically tested) intervention.



Interventional estimates

Always/never comparisons are 
exposure contrasts (B)

Interventional estimates are more 
immediately useful for policy. E.g., 

– population attributable effect (C)

– generalized intervention effect (D)

– dynamic intervention effect (E)

See Westreich Epidemiology 2017 for 
more discussion (and this figure).



Dynamic intervention effect

The risk under the observed exposure compared to the 
risk under some exposure removed conditional on 
characteristics Z of participants.

Dynamic and generalized effects will differ when there is 
(i) effect measure modification of the exposure by Z, and
(ii) the intervention removes exposure differentially by Z.

E.g., smoking is worse for miscarriage when you’re older 
than when you’re younger; and older women quit 
smoking less readily than younger women.



A general rule for this schema

If an effect is invariant to the exposure 
prevalence, it is an exposure effect.

If an effect varies with exposure prevalence, it is 
a population intervention effect.

(Consider a randomized trial.)



Implications for our study

We asked: what is the causal effect of smoking 
on risk of miscarriage, and does the effect vary 
between HIV-positive and HIV-negative women?

What if instead we asked a question more 
relevant to the WIHS itself. For example: what is 
the expected impact of a realistic intervention 
for smoking cessation on the total population 
risks of miscarriage in the HIV-positive women?



Causal question changes

From:

Smoking Miscarriage

Confounders



Causal question changes

From:

To:

Smoking Miscarriage

Confounders

Smoking Miscarriage

ConfoundersIntervention



Statistical methods

Risk differences rather than risk ratios. Since we are interested in 
potential interventions, we care not about relative risks, but 
about absolute changes in number of pregnancy losses.

Use the parametric g-formula to estimate this, because it is 
conceptually very clear way of simulating the impact of realistic 
interventions in observed data (and scales to highly complex 
data  / interventions).



The g-formula in one (more) slide

For a time-fixed exposure, this is very easy. 

• Fit a model for the outcome on exposure, confounders.
– Easiest to think about a logistic model.

• Use beta-coefficients from fit model to predict outcomes for each individual under 
their observed exposure (risk under natural course).

• Then, go and alter everyone’s exposure to what it would be under the proposed 
intervention (risk under intervention)
– predict outcomes under THOSE exposures.

• Compare the two. Bootstrap for confidence intervals.

Much trickier to implement with a time-varying exposure, but similar in principle. 

Note that simulating the intervention node in our amended DAG may require us to go 
outside the data we have at hand; and so perhaps this goes one single step beyond 
the g-formula toward microsimulation.

Robins J Chron Dis 1987; Petersen & van der Laan JAIDS 2006; 
Taubman et al. 2009; Westreich et al. 2012; others



Results (briefly, b/c time)

We woul have to offer a realistic smoking 
cessation intervention (which we have seen 
demonstrated elsewhere in the WIHS) to 36 HIV-
positive women to prevent one miscarriage.

Full results: Westreich et al. AIDS 2017. 



Discussion

Policy decisions usually involve at least some form of cost-effectiveness 
analysis. That last NNT is vastly more useful to a cost-effectiveness analysis 
than the risk ratio from the original analysis. But which do we usually report?

Implementation science needs to start implementing with a workable 
intervention. But typical epidemiologic analyses provide estimates of 
exposure effects, not estimates of intervention effects.

Estimating population intervention effects can help make your work more 
immediately applicable to public health policy and implementation science.

With the strong caveat that we should rarely be making policy based on a single 
study. We could adopt a semi-Bayesian approach to guard against errors in this 
realm, or rely on meta-analysis instead of my one study.



Limitations

While more tied to the real world, estimating population 
intervention contrasts require additional assumptions. 

One of them is inherent in our definitions: that 
population intervention effects depend on exposure 
prevalence, so we have to consider generalizability closely 
(I’ll return to this shortly).

Another: no meaningful side effects of the intervention.

Sidebar: the sales price fallacy.



Causal question changes…

From:

To:

Smoking Miscarriage

Depression

Smoking Miscarriage

DepressionIntervention



…and changes again.

From:

To:

Smoking Miscarriage

Depression

Smoking Miscarriage

DepressionIntervention



Internal validity and its discontents

When epidemiologists and biostatisticians talk 
about “causal inference” they usually mean only 
internal validity – which basically comes down to 
(approximately!) “the stuff you get for free in a 
well-conducted doubled-blinded randomized trial 
with no loss to follow-up under an ITT analysis.”

In which case, “causal inference” is not the whole 
story. We proposed an alternative model:



In particular, we argue for a framework that 
examines

1. Internal validity

2. External validity

3. Population intervention estimation

Westreich et al. American Journal of Public Health 2016



Briefly, on internal v. external validity

A trial (or well-conducted observational study) will usually 
identify an internally valid average causal effect (ACE) – one 
which is valid in the study sample.

But what is the target population? We are rarely interested in 
the study sample for its own sake, yet it is rare that we 
formally identify the target population. We almost never 
describe the target population in detail.

If the target population differs systematically from the study 
sample, the average causal effect estimated from the study 
sample may not generalize (or “transport”) unconditionally.



Example

The causal effect of treatment on the outcome is a risk 
difference of 10% in HIV-negative women, and 20% in 
HIV-positive women. 

Our study is 50% HIV-positive, because we oversampled 
HIV-positive women.

Our target population is only 10% HIV-positive women.

Same overall risk difference? (No: it’s just about weighted 
averages.)



Example: every traditional randomized 
trial
1. We know that for a non-null effect, a change in the baseline 
risk of outcome necessitates effect measure modification on at 
least one scale (difference or ratio). Example:

Baseline risk Exposed risk RD RR
5% 10% (10-5=) 5% (10/5 =) 2.0

Suppose baseline risk shifts to 10%: what is exposed risk?

10% 20% 10% 2.0
10% 15% 5% 1.5

RD and RR can’t both stay constant here.



Example: every traditional randomized 
trial
2. Nearly all randomized trials misrepresent the baseline risk in 
the target population. 

Typically, they will oversample individuals at high risk of the 
outcome to increase power. 

In HIV contexts, for example: serodiscordant couples studies for 
HIV transmission outcomes; people with high-risk behaviors for 
HIV vaccine trials.

In CVD contexts: people with high risk of MI or stroke.



Example: every traditional randomized 
trial
Therefore: 

Most randomized trials will not be generalizable to the 
intended target population (from which the study population 
was sampled) on at least one scale (ratio or difference).

Specifically, this will apply to any trial with a non-null result, 
where the baseline risk in the target population of interest 
differs from the baseline risk in the study sample.

Of course, if the target population IS the study sample, there is 
no issue; but this is rarely the case (indeed, elsewhere we argue 
never).



External validity: recent attention

Very little formal, quantitative attention was paid to external validity in 
the modern causal inference literature until recently.

Hernán et al. Epidemiology 2008; Weisberg et al. and Frangakis
(comment) Clinical Trials 2009, Keiding and Louis JRSSA, 2016.

Cole & Stuart Am J Epid 2010 presented a method using inverse 
probability weights to standardize clinical trial results to an external 
target population. Extended by Westreich et al. AJE 2017 in press.

Pearl and Bareinboim (and others) have presented several papers 
presenting causal diagram-based methods for identification of 
externally valid causal effects.



In particular, we argue for a framework that 
examines

1. Internal validity

2. External validity

3. Population intervention estimation



In conclusion

Smoking is bad.

…and over to Dr. Rogawski.


